pycofitness—Evaluating the fitness landscape of RNA and protein sequences

Abstract Motivation The accurate prediction of how mutations change biophysical properties of proteins or RNA is a major goal in computational biology with tremendous impacts on protein design and genetic variant interpretation. Evolutionary approaches such as coevolution can help solving this issue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2024-02, Vol.40 (2)
Hauptverfasser: Pucci, Fabrizio, Zerihun, Mehari B, Rooman, Marianne, Schug, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Bioinformatics (Oxford, England)
container_volume 40
creator Pucci, Fabrizio
Zerihun, Mehari B
Rooman, Marianne
Schug, Alexander
description Abstract Motivation The accurate prediction of how mutations change biophysical properties of proteins or RNA is a major goal in computational biology with tremendous impacts on protein design and genetic variant interpretation. Evolutionary approaches such as coevolution can help solving this issue. Results We present pycofitness, a standalone Python-based software package for the in silico mutagenesis of protein and RNA sequences. It is based on coevolution and, more specifically, on a popular inverse statistical approach, namely direct coupling analysis by pseudo-likelihood maximization. Its efficient implementation and user-friendly command line interface make it an easy-to-use tool even for researchers with no bioinformatics background. To illustrate its strengths, we present three applications in which pycofitness efficiently predicts the deleteriousness of genetic variants and the effect of mutations on protein fitness and thermodynamic stability. Availability and implementation https://github.com/KIT-MBS/pycofitness.
doi_str_mv 10.1093/bioinformatics/btae074
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10881095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btae074</oup_id><sourcerecordid>3124438965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-79ee13ce34345a98d3414fc6e0308609894ec890bf0735eedb505d4f9a586c3f3</originalsourceid><addsrcrecordid>eNqNkc1KJDEUhYM4-P8KUuBmNj3edJKqZCUijiPKDAy6DqnUjUaqk5qkSnA3DzFPOE9ipNtGXblKwj3345wcQg4pfKOg2HHrow8upoUZvc3H7WgQGr5BdiirmxmXlG6u78C2yW7ODwAgQNRbZJtJxoSayx1yNTzZ6PwYMOf_f_-dP5p-KshwV433WK0GVW9Cl60ZsIqu-v3ztCrvakhxRB-qjH8mDBbzPvniTJ_xYHXukdvv5zdnP2bXvy4uz06vZ5ZLMc4ahUiZRcYZF0bJjnHKna0RGMgalFQcrVTQOmiYQOza4rrjThkha8sc2yMnS-4wtQvsLIYxmV4PyS9MetLReP1-Evy9vouPmoKU5fdEIXxdEVIs5vOoFz5b7EtOjFPWczUXwEGqpkiPPkgf4pRCyacZnXPOpKpfgPVSZVPMOaFbu6GgXwrT7wvTq8LK4uHbLOu114aKgC4FcRo-C30G74CrCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124438965</pqid></control><display><type>article</type><title>pycofitness—Evaluating the fitness landscape of RNA and protein sequences</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pucci, Fabrizio ; Zerihun, Mehari B ; Rooman, Marianne ; Schug, Alexander</creator><contributor>Ponty, Yann</contributor><creatorcontrib>Pucci, Fabrizio ; Zerihun, Mehari B ; Rooman, Marianne ; Schug, Alexander ; Ponty, Yann</creatorcontrib><description>Abstract Motivation The accurate prediction of how mutations change biophysical properties of proteins or RNA is a major goal in computational biology with tremendous impacts on protein design and genetic variant interpretation. Evolutionary approaches such as coevolution can help solving this issue. Results We present pycofitness, a standalone Python-based software package for the in silico mutagenesis of protein and RNA sequences. It is based on coevolution and, more specifically, on a popular inverse statistical approach, namely direct coupling analysis by pseudo-likelihood maximization. Its efficient implementation and user-friendly command line interface make it an easy-to-use tool even for researchers with no bioinformatics background. To illustrate its strengths, we present three applications in which pycofitness efficiently predicts the deleteriousness of genetic variants and the effect of mutations on protein fitness and thermodynamic stability. Availability and implementation https://github.com/KIT-MBS/pycofitness.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btae074</identifier><identifier>PMID: 38335928</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Applications Note ; Bioinformatics ; Biological effects ; Coevolution ; Computational Biology ; Gene sequencing ; Genetic diversity ; Genetic variance ; Line interfaces ; Mutagenesis ; Mutation ; Proteins ; Ribonucleic acid ; RNA ; RNA - genetics ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2024-02, Vol.40 (2)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-79ee13ce34345a98d3414fc6e0308609894ec890bf0735eedb505d4f9a586c3f3</citedby><cites>FETCH-LOGICAL-c485t-79ee13ce34345a98d3414fc6e0308609894ec890bf0735eedb505d4f9a586c3f3</cites><orcidid>0000-0002-0534-502X ; 0000-0003-2916-022X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881095/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881095/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38335928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ponty, Yann</contributor><creatorcontrib>Pucci, Fabrizio</creatorcontrib><creatorcontrib>Zerihun, Mehari B</creatorcontrib><creatorcontrib>Rooman, Marianne</creatorcontrib><creatorcontrib>Schug, Alexander</creatorcontrib><title>pycofitness—Evaluating the fitness landscape of RNA and protein sequences</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation The accurate prediction of how mutations change biophysical properties of proteins or RNA is a major goal in computational biology with tremendous impacts on protein design and genetic variant interpretation. Evolutionary approaches such as coevolution can help solving this issue. Results We present pycofitness, a standalone Python-based software package for the in silico mutagenesis of protein and RNA sequences. It is based on coevolution and, more specifically, on a popular inverse statistical approach, namely direct coupling analysis by pseudo-likelihood maximization. Its efficient implementation and user-friendly command line interface make it an easy-to-use tool even for researchers with no bioinformatics background. To illustrate its strengths, we present three applications in which pycofitness efficiently predicts the deleteriousness of genetic variants and the effect of mutations on protein fitness and thermodynamic stability. Availability and implementation https://github.com/KIT-MBS/pycofitness.</description><subject>Amino Acid Sequence</subject><subject>Applications Note</subject><subject>Bioinformatics</subject><subject>Biological effects</subject><subject>Coevolution</subject><subject>Computational Biology</subject><subject>Gene sequencing</subject><subject>Genetic diversity</subject><subject>Genetic variance</subject><subject>Line interfaces</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - genetics</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1KJDEUhYM4-P8KUuBmNj3edJKqZCUijiPKDAy6DqnUjUaqk5qkSnA3DzFPOE9ipNtGXblKwj3345wcQg4pfKOg2HHrow8upoUZvc3H7WgQGr5BdiirmxmXlG6u78C2yW7ODwAgQNRbZJtJxoSayx1yNTzZ6PwYMOf_f_-dP5p-KshwV433WK0GVW9Cl60ZsIqu-v3ztCrvakhxRB-qjH8mDBbzPvniTJ_xYHXukdvv5zdnP2bXvy4uz06vZ5ZLMc4ahUiZRcYZF0bJjnHKna0RGMgalFQcrVTQOmiYQOza4rrjThkha8sc2yMnS-4wtQvsLIYxmV4PyS9MetLReP1-Evy9vouPmoKU5fdEIXxdEVIs5vOoFz5b7EtOjFPWczUXwEGqpkiPPkgf4pRCyacZnXPOpKpfgPVSZVPMOaFbu6GgXwrT7wvTq8LK4uHbLOu114aKgC4FcRo-C30G74CrCQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Pucci, Fabrizio</creator><creator>Zerihun, Mehari B</creator><creator>Rooman, Marianne</creator><creator>Schug, Alexander</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0534-502X</orcidid><orcidid>https://orcid.org/0000-0003-2916-022X</orcidid></search><sort><creationdate>20240201</creationdate><title>pycofitness—Evaluating the fitness landscape of RNA and protein sequences</title><author>Pucci, Fabrizio ; Zerihun, Mehari B ; Rooman, Marianne ; Schug, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-79ee13ce34345a98d3414fc6e0308609894ec890bf0735eedb505d4f9a586c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino Acid Sequence</topic><topic>Applications Note</topic><topic>Bioinformatics</topic><topic>Biological effects</topic><topic>Coevolution</topic><topic>Computational Biology</topic><topic>Gene sequencing</topic><topic>Genetic diversity</topic><topic>Genetic variance</topic><topic>Line interfaces</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - genetics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pucci, Fabrizio</creatorcontrib><creatorcontrib>Zerihun, Mehari B</creatorcontrib><creatorcontrib>Rooman, Marianne</creatorcontrib><creatorcontrib>Schug, Alexander</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pucci, Fabrizio</au><au>Zerihun, Mehari B</au><au>Rooman, Marianne</au><au>Schug, Alexander</au><au>Ponty, Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pycofitness—Evaluating the fitness landscape of RNA and protein sequences</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>40</volume><issue>2</issue><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation The accurate prediction of how mutations change biophysical properties of proteins or RNA is a major goal in computational biology with tremendous impacts on protein design and genetic variant interpretation. Evolutionary approaches such as coevolution can help solving this issue. Results We present pycofitness, a standalone Python-based software package for the in silico mutagenesis of protein and RNA sequences. It is based on coevolution and, more specifically, on a popular inverse statistical approach, namely direct coupling analysis by pseudo-likelihood maximization. Its efficient implementation and user-friendly command line interface make it an easy-to-use tool even for researchers with no bioinformatics background. To illustrate its strengths, we present three applications in which pycofitness efficiently predicts the deleteriousness of genetic variants and the effect of mutations on protein fitness and thermodynamic stability. Availability and implementation https://github.com/KIT-MBS/pycofitness.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38335928</pmid><doi>10.1093/bioinformatics/btae074</doi><orcidid>https://orcid.org/0000-0002-0534-502X</orcidid><orcidid>https://orcid.org/0000-0003-2916-022X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2024-02, Vol.40 (2)
issn 1367-4803
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10881095
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection
subjects Amino Acid Sequence
Applications Note
Bioinformatics
Biological effects
Coevolution
Computational Biology
Gene sequencing
Genetic diversity
Genetic variance
Line interfaces
Mutagenesis
Mutation
Proteins
Ribonucleic acid
RNA
RNA - genetics
Software
title pycofitness—Evaluating the fitness landscape of RNA and protein sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pycofitness%E2%80%94Evaluating%20the%20fitness%20landscape%20of%20RNA%20and%20protein%20sequences&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Pucci,%20Fabrizio&rft.date=2024-02-01&rft.volume=40&rft.issue=2&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btae074&rft_dat=%3Cproquest_pubme%3E3124438965%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124438965&rft_id=info:pmid/38335928&rft_oup_id=10.1093/bioinformatics/btae074&rfr_iscdi=true