SpatialDDLS: an R package to deconvolute spatial transcriptomics data using neural networks

Abstract Summary Spatial transcriptomics has changed our way to study tissue structure and cellular organization. However, there are still limitations in its resolution, and most available platforms do not reach a single cell resolution. To address this issue, we introduce SpatialDDLS, a fast neural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2024-02, Vol.40 (2)
Hauptverfasser: Mañanes, Diego, Rivero-García, Inés, Relaño, Carlos, Torres, Miguel, Sancho, David, Jimenez-Carretero, Daniel, Torroja, Carlos, Sánchez-Cabo, Fátima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Bioinformatics (Oxford, England)
container_volume 40
creator Mañanes, Diego
Rivero-García, Inés
Relaño, Carlos
Torres, Miguel
Sancho, David
Jimenez-Carretero, Daniel
Torroja, Carlos
Sánchez-Cabo, Fátima
description Abstract Summary Spatial transcriptomics has changed our way to study tissue structure and cellular organization. However, there are still limitations in its resolution, and most available platforms do not reach a single cell resolution. To address this issue, we introduce SpatialDDLS, a fast neural network-based algorithm for cell type deconvolution of spatial transcriptomics data. SpatialDDLS leverages single-cell RNA sequencing data to simulate mixed transcriptional profiles with predefined cellular composition, which are subsequently used to train a fully connected neural network to uncover cell type diversity within each spot. By comparing it with two state-of-the-art spatial deconvolution methods, we demonstrate that SpatialDDLS is an accurate and fast alternative to the available state-of-the art tools. Availability and implementation The R package SpatialDDLS is available via CRAN-The Comprehensive R Archive Network: https://CRAN.R-project.org/package=SpatialDDLS. A detailed manual of the main functionalities implemented in the package can be found at https://diegommcc.github.io/SpatialDDLS.
doi_str_mv 10.1093/bioinformatics/btae072
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10881086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btae072</oup_id><sourcerecordid>2928243036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-edd26b28e8454037deb5c7f6abe5781175ec9187fb9a1bfbc6553178afe78b163</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi1ERUvhL1SWuHBZasfxR7gg1PIlrVSJwomDZTuTxW1iB9sp4t_Xq11WLScOI4_kZ96ZVy9CZ5S8oaRj59ZHH4aYJlO8y-e2GCCyeYJOKBNy1SpKnx56wo7R85xvCCGccPEMHTPFhBC8OUE_rueqYMbLy_X1W2wC_opn427NBnCJuAcXw10clwI470BckgnZJT-XONXVuDfF4CX7sMEBllSJAOV3TLf5BToazJjh5f49Rd8_fvh28Xm1vvr05eL9euVaxcsK-r4RtlGgWt4SJnuw3MlBGAtcViOSg-uokoPtDLWDdYJzRqUyA0hlqWCn6N1Od17sBL2DUG8c9Zz8ZNIfHY3Xj3-C_6k38U5TolStrcLrvUKKvxbIRU8-OxhHEyAuWTddo5qWEbZFX_2D3sQlhepPM9q0LetERysldpRLMecEw-EaSvQ2QP04QL0PsA6ePfRyGPubWAXoDojL_L-i99y7sIY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124439691</pqid></control><display><type>article</type><title>SpatialDDLS: an R package to deconvolute spatial transcriptomics data using neural networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mañanes, Diego ; Rivero-García, Inés ; Relaño, Carlos ; Torres, Miguel ; Sancho, David ; Jimenez-Carretero, Daniel ; Torroja, Carlos ; Sánchez-Cabo, Fátima</creator><contributor>Birol, Inanc</contributor><creatorcontrib>Mañanes, Diego ; Rivero-García, Inés ; Relaño, Carlos ; Torres, Miguel ; Sancho, David ; Jimenez-Carretero, Daniel ; Torroja, Carlos ; Sánchez-Cabo, Fátima ; Birol, Inanc</creatorcontrib><description>Abstract Summary Spatial transcriptomics has changed our way to study tissue structure and cellular organization. However, there are still limitations in its resolution, and most available platforms do not reach a single cell resolution. To address this issue, we introduce SpatialDDLS, a fast neural network-based algorithm for cell type deconvolution of spatial transcriptomics data. SpatialDDLS leverages single-cell RNA sequencing data to simulate mixed transcriptional profiles with predefined cellular composition, which are subsequently used to train a fully connected neural network to uncover cell type diversity within each spot. By comparing it with two state-of-the-art spatial deconvolution methods, we demonstrate that SpatialDDLS is an accurate and fast alternative to the available state-of-the art tools. Availability and implementation The R package SpatialDDLS is available via CRAN-The Comprehensive R Archive Network: https://CRAN.R-project.org/package=SpatialDDLS. A detailed manual of the main functionalities implemented in the package can be found at https://diegommcc.github.io/SpatialDDLS.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btae072</identifier><identifier>PMID: 38366652</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Applications Note ; Availability ; Cellular structure ; Deconvolution ; Gene Expression Profiling ; Gene sequencing ; Neural networks ; Neural Networks, Computer ; Software ; Spatial data ; Transcriptomics</subject><ispartof>Bioinformatics (Oxford, England), 2024-02, Vol.40 (2)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-edd26b28e8454037deb5c7f6abe5781175ec9187fb9a1bfbc6553178afe78b163</citedby><cites>FETCH-LOGICAL-c485t-edd26b28e8454037deb5c7f6abe5781175ec9187fb9a1bfbc6553178afe78b163</cites><orcidid>0000-0003-1881-1664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881086/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881086/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38366652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Birol, Inanc</contributor><creatorcontrib>Mañanes, Diego</creatorcontrib><creatorcontrib>Rivero-García, Inés</creatorcontrib><creatorcontrib>Relaño, Carlos</creatorcontrib><creatorcontrib>Torres, Miguel</creatorcontrib><creatorcontrib>Sancho, David</creatorcontrib><creatorcontrib>Jimenez-Carretero, Daniel</creatorcontrib><creatorcontrib>Torroja, Carlos</creatorcontrib><creatorcontrib>Sánchez-Cabo, Fátima</creatorcontrib><title>SpatialDDLS: an R package to deconvolute spatial transcriptomics data using neural networks</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Summary Spatial transcriptomics has changed our way to study tissue structure and cellular organization. However, there are still limitations in its resolution, and most available platforms do not reach a single cell resolution. To address this issue, we introduce SpatialDDLS, a fast neural network-based algorithm for cell type deconvolution of spatial transcriptomics data. SpatialDDLS leverages single-cell RNA sequencing data to simulate mixed transcriptional profiles with predefined cellular composition, which are subsequently used to train a fully connected neural network to uncover cell type diversity within each spot. By comparing it with two state-of-the-art spatial deconvolution methods, we demonstrate that SpatialDDLS is an accurate and fast alternative to the available state-of-the art tools. Availability and implementation The R package SpatialDDLS is available via CRAN-The Comprehensive R Archive Network: https://CRAN.R-project.org/package=SpatialDDLS. A detailed manual of the main functionalities implemented in the package can be found at https://diegommcc.github.io/SpatialDDLS.</description><subject>Algorithms</subject><subject>Applications Note</subject><subject>Availability</subject><subject>Cellular structure</subject><subject>Deconvolution</subject><subject>Gene Expression Profiling</subject><subject>Gene sequencing</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Software</subject><subject>Spatial data</subject><subject>Transcriptomics</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi1ERUvhL1SWuHBZasfxR7gg1PIlrVSJwomDZTuTxW1iB9sp4t_Xq11WLScOI4_kZ96ZVy9CZ5S8oaRj59ZHH4aYJlO8y-e2GCCyeYJOKBNy1SpKnx56wo7R85xvCCGccPEMHTPFhBC8OUE_rueqYMbLy_X1W2wC_opn427NBnCJuAcXw10clwI470BckgnZJT-XONXVuDfF4CX7sMEBllSJAOV3TLf5BToazJjh5f49Rd8_fvh28Xm1vvr05eL9euVaxcsK-r4RtlGgWt4SJnuw3MlBGAtcViOSg-uokoPtDLWDdYJzRqUyA0hlqWCn6N1Od17sBL2DUG8c9Zz8ZNIfHY3Xj3-C_6k38U5TolStrcLrvUKKvxbIRU8-OxhHEyAuWTddo5qWEbZFX_2D3sQlhepPM9q0LetERysldpRLMecEw-EaSvQ2QP04QL0PsA6ePfRyGPubWAXoDojL_L-i99y7sIY</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Mañanes, Diego</creator><creator>Rivero-García, Inés</creator><creator>Relaño, Carlos</creator><creator>Torres, Miguel</creator><creator>Sancho, David</creator><creator>Jimenez-Carretero, Daniel</creator><creator>Torroja, Carlos</creator><creator>Sánchez-Cabo, Fátima</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1881-1664</orcidid></search><sort><creationdate>20240201</creationdate><title>SpatialDDLS: an R package to deconvolute spatial transcriptomics data using neural networks</title><author>Mañanes, Diego ; Rivero-García, Inés ; Relaño, Carlos ; Torres, Miguel ; Sancho, David ; Jimenez-Carretero, Daniel ; Torroja, Carlos ; Sánchez-Cabo, Fátima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-edd26b28e8454037deb5c7f6abe5781175ec9187fb9a1bfbc6553178afe78b163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Applications Note</topic><topic>Availability</topic><topic>Cellular structure</topic><topic>Deconvolution</topic><topic>Gene Expression Profiling</topic><topic>Gene sequencing</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Software</topic><topic>Spatial data</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mañanes, Diego</creatorcontrib><creatorcontrib>Rivero-García, Inés</creatorcontrib><creatorcontrib>Relaño, Carlos</creatorcontrib><creatorcontrib>Torres, Miguel</creatorcontrib><creatorcontrib>Sancho, David</creatorcontrib><creatorcontrib>Jimenez-Carretero, Daniel</creatorcontrib><creatorcontrib>Torroja, Carlos</creatorcontrib><creatorcontrib>Sánchez-Cabo, Fátima</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mañanes, Diego</au><au>Rivero-García, Inés</au><au>Relaño, Carlos</au><au>Torres, Miguel</au><au>Sancho, David</au><au>Jimenez-Carretero, Daniel</au><au>Torroja, Carlos</au><au>Sánchez-Cabo, Fátima</au><au>Birol, Inanc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SpatialDDLS: an R package to deconvolute spatial transcriptomics data using neural networks</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>40</volume><issue>2</issue><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract Summary Spatial transcriptomics has changed our way to study tissue structure and cellular organization. However, there are still limitations in its resolution, and most available platforms do not reach a single cell resolution. To address this issue, we introduce SpatialDDLS, a fast neural network-based algorithm for cell type deconvolution of spatial transcriptomics data. SpatialDDLS leverages single-cell RNA sequencing data to simulate mixed transcriptional profiles with predefined cellular composition, which are subsequently used to train a fully connected neural network to uncover cell type diversity within each spot. By comparing it with two state-of-the-art spatial deconvolution methods, we demonstrate that SpatialDDLS is an accurate and fast alternative to the available state-of-the art tools. Availability and implementation The R package SpatialDDLS is available via CRAN-The Comprehensive R Archive Network: https://CRAN.R-project.org/package=SpatialDDLS. A detailed manual of the main functionalities implemented in the package can be found at https://diegommcc.github.io/SpatialDDLS.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38366652</pmid><doi>10.1093/bioinformatics/btae072</doi><orcidid>https://orcid.org/0000-0003-1881-1664</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2024-02, Vol.40 (2)
issn 1367-4803
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10881086
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Applications Note
Availability
Cellular structure
Deconvolution
Gene Expression Profiling
Gene sequencing
Neural networks
Neural Networks, Computer
Software
Spatial data
Transcriptomics
title SpatialDDLS: an R package to deconvolute spatial transcriptomics data using neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SpatialDDLS:%20an%20R%20package%20to%20deconvolute%20spatial%20transcriptomics%20data%20using%20neural%20networks&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Ma%C3%B1anes,%20Diego&rft.date=2024-02-01&rft.volume=40&rft.issue=2&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btae072&rft_dat=%3Cproquest_pubme%3E2928243036%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124439691&rft_id=info:pmid/38366652&rft_oup_id=10.1093/bioinformatics/btae072&rfr_iscdi=true