Integrating Artificial Intelligence and Machine Learning Into Cancer Clinical Trials

The practice of oncology requires analyzing and synthesizing abundant data. From the patient's workup to determine eligibility to the therapies received to the post-treatment surveillance, practitioners must constantly juggle, evaluate, and weigh decision-making based on their best understandin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in radiation oncology 2023-10, Vol.33 (4), p.386-394
Hauptverfasser: Kang, John, Chowdhry, Amit K., Pugh, Stephanie L., Park, John H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 394
container_issue 4
container_start_page 386
container_title Seminars in radiation oncology
container_volume 33
creator Kang, John
Chowdhry, Amit K.
Pugh, Stephanie L.
Park, John H.
description The practice of oncology requires analyzing and synthesizing abundant data. From the patient's workup to determine eligibility to the therapies received to the post-treatment surveillance, practitioners must constantly juggle, evaluate, and weigh decision-making based on their best understanding of information at hand. These complex, multifactorial decisions have a tremendous opportunity to benefit from data-driven machine learning (ML) methods to drive opportunities in artificial intelligence (AI). Within the past 5 years, we have seen AI move from simply a promising opportunity to being used in prospective trials. Here, we review recent efforts of AI in clinical trials that have moved the needle towards improved prediction of actionable outcomes, such as predicting acute care visits, short term mortality, and pathologic extranodal extension. We then pause and reflect on how these AI models ask a different question than traditional statistics models that readers may be more familiar with; how then should readers conceptualize and interpret AI models that they are not as familiar with. We end with what we believe are promising future opportunities for AI in oncology, with an eye towards allowing the data to inform us through unsupervised learning and generative models, rather than asking AI to perform specific functions.
doi_str_mv 10.1016/j.semradonc.2023.06.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10880815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053429623000413</els_id><sourcerecordid>2863296459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-33d47e1bd08490aea765367591d77a6764a643fd5ba3a9161a875e7547c0682a3</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0E4lH4BciSTYIdO3ayQlXFSypiU9bW1J4WV6kDdorE3-OopYIVK1uec2fG9xJyxWjBKJM3qyLiOoDtvClKWvKCyoJScUBOWcXLvBGSHaY7rXguykaekLMYV5SWTJXNMTnhStaCyvqUzJ58j8sAvfPLbBx6t3DGQZsNz23rlugNZuBt9gzmzXnMpgjBD3AiumwCqR6ySeu8M0k2C0kcz8nRIh14sTtH5PX-bjZ5zKcvD0-T8TQ3Qsk-59wKhWxuaS0aCghKVlyqqmFWKZBKCpCCL2w1Bw4NkwxqVaGqhDJp9xL4iNxu-75v5mu0Bn0foNXvwa0hfOkOnP5b8e5NL7tPzWhd0zpZNSLXuw6h-9hg7PXaRZN-Dh67TdRlLXnyT1RNQtUWNaGLMeBiP4dRPYSiV3ofih5C0VTqFEpSXv5ec6_7SSEB4y2AyaxPh0FH4wbnrQtoem079--Qb-tSoqc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863296459</pqid></control><display><type>article</type><title>Integrating Artificial Intelligence and Machine Learning Into Cancer Clinical Trials</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kang, John ; Chowdhry, Amit K. ; Pugh, Stephanie L. ; Park, John H.</creator><creatorcontrib>Kang, John ; Chowdhry, Amit K. ; Pugh, Stephanie L. ; Park, John H.</creatorcontrib><description>The practice of oncology requires analyzing and synthesizing abundant data. From the patient's workup to determine eligibility to the therapies received to the post-treatment surveillance, practitioners must constantly juggle, evaluate, and weigh decision-making based on their best understanding of information at hand. These complex, multifactorial decisions have a tremendous opportunity to benefit from data-driven machine learning (ML) methods to drive opportunities in artificial intelligence (AI). Within the past 5 years, we have seen AI move from simply a promising opportunity to being used in prospective trials. Here, we review recent efforts of AI in clinical trials that have moved the needle towards improved prediction of actionable outcomes, such as predicting acute care visits, short term mortality, and pathologic extranodal extension. We then pause and reflect on how these AI models ask a different question than traditional statistics models that readers may be more familiar with; how then should readers conceptualize and interpret AI models that they are not as familiar with. We end with what we believe are promising future opportunities for AI in oncology, with an eye towards allowing the data to inform us through unsupervised learning and generative models, rather than asking AI to perform specific functions.</description><identifier>ISSN: 1053-4296</identifier><identifier>ISSN: 1532-9461</identifier><identifier>EISSN: 1532-9461</identifier><identifier>DOI: 10.1016/j.semradonc.2023.06.004</identifier><identifier>PMID: 37684068</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Artificial Intelligence ; Clinical Trials as Topic ; Humans ; Machine Learning ; Medical Oncology ; Neoplasms - therapy ; Prospective Studies</subject><ispartof>Seminars in radiation oncology, 2023-10, Vol.33 (4), p.386-394</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-33d47e1bd08490aea765367591d77a6764a643fd5ba3a9161a875e7547c0682a3</citedby><cites>FETCH-LOGICAL-c476t-33d47e1bd08490aea765367591d77a6764a643fd5ba3a9161a875e7547c0682a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.semradonc.2023.06.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37684068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, John</creatorcontrib><creatorcontrib>Chowdhry, Amit K.</creatorcontrib><creatorcontrib>Pugh, Stephanie L.</creatorcontrib><creatorcontrib>Park, John H.</creatorcontrib><title>Integrating Artificial Intelligence and Machine Learning Into Cancer Clinical Trials</title><title>Seminars in radiation oncology</title><addtitle>Semin Radiat Oncol</addtitle><description>The practice of oncology requires analyzing and synthesizing abundant data. From the patient's workup to determine eligibility to the therapies received to the post-treatment surveillance, practitioners must constantly juggle, evaluate, and weigh decision-making based on their best understanding of information at hand. These complex, multifactorial decisions have a tremendous opportunity to benefit from data-driven machine learning (ML) methods to drive opportunities in artificial intelligence (AI). Within the past 5 years, we have seen AI move from simply a promising opportunity to being used in prospective trials. Here, we review recent efforts of AI in clinical trials that have moved the needle towards improved prediction of actionable outcomes, such as predicting acute care visits, short term mortality, and pathologic extranodal extension. We then pause and reflect on how these AI models ask a different question than traditional statistics models that readers may be more familiar with; how then should readers conceptualize and interpret AI models that they are not as familiar with. We end with what we believe are promising future opportunities for AI in oncology, with an eye towards allowing the data to inform us through unsupervised learning and generative models, rather than asking AI to perform specific functions.</description><subject>Artificial Intelligence</subject><subject>Clinical Trials as Topic</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Medical Oncology</subject><subject>Neoplasms - therapy</subject><subject>Prospective Studies</subject><issn>1053-4296</issn><issn>1532-9461</issn><issn>1532-9461</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctOwzAQRS0E4lH4BciSTYIdO3ayQlXFSypiU9bW1J4WV6kDdorE3-OopYIVK1uec2fG9xJyxWjBKJM3qyLiOoDtvClKWvKCyoJScUBOWcXLvBGSHaY7rXguykaekLMYV5SWTJXNMTnhStaCyvqUzJ58j8sAvfPLbBx6t3DGQZsNz23rlugNZuBt9gzmzXnMpgjBD3AiumwCqR6ySeu8M0k2C0kcz8nRIh14sTtH5PX-bjZ5zKcvD0-T8TQ3Qsk-59wKhWxuaS0aCghKVlyqqmFWKZBKCpCCL2w1Bw4NkwxqVaGqhDJp9xL4iNxu-75v5mu0Bn0foNXvwa0hfOkOnP5b8e5NL7tPzWhd0zpZNSLXuw6h-9hg7PXaRZN-Dh67TdRlLXnyT1RNQtUWNaGLMeBiP4dRPYSiV3ofih5C0VTqFEpSXv5ec6_7SSEB4y2AyaxPh0FH4wbnrQtoem079--Qb-tSoqc</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Kang, John</creator><creator>Chowdhry, Amit K.</creator><creator>Pugh, Stephanie L.</creator><creator>Park, John H.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202310</creationdate><title>Integrating Artificial Intelligence and Machine Learning Into Cancer Clinical Trials</title><author>Kang, John ; Chowdhry, Amit K. ; Pugh, Stephanie L. ; Park, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-33d47e1bd08490aea765367591d77a6764a643fd5ba3a9161a875e7547c0682a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Clinical Trials as Topic</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Medical Oncology</topic><topic>Neoplasms - therapy</topic><topic>Prospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, John</creatorcontrib><creatorcontrib>Chowdhry, Amit K.</creatorcontrib><creatorcontrib>Pugh, Stephanie L.</creatorcontrib><creatorcontrib>Park, John H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Seminars in radiation oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, John</au><au>Chowdhry, Amit K.</au><au>Pugh, Stephanie L.</au><au>Park, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Artificial Intelligence and Machine Learning Into Cancer Clinical Trials</atitle><jtitle>Seminars in radiation oncology</jtitle><addtitle>Semin Radiat Oncol</addtitle><date>2023-10</date><risdate>2023</risdate><volume>33</volume><issue>4</issue><spage>386</spage><epage>394</epage><pages>386-394</pages><issn>1053-4296</issn><issn>1532-9461</issn><eissn>1532-9461</eissn><abstract>The practice of oncology requires analyzing and synthesizing abundant data. From the patient's workup to determine eligibility to the therapies received to the post-treatment surveillance, practitioners must constantly juggle, evaluate, and weigh decision-making based on their best understanding of information at hand. These complex, multifactorial decisions have a tremendous opportunity to benefit from data-driven machine learning (ML) methods to drive opportunities in artificial intelligence (AI). Within the past 5 years, we have seen AI move from simply a promising opportunity to being used in prospective trials. Here, we review recent efforts of AI in clinical trials that have moved the needle towards improved prediction of actionable outcomes, such as predicting acute care visits, short term mortality, and pathologic extranodal extension. We then pause and reflect on how these AI models ask a different question than traditional statistics models that readers may be more familiar with; how then should readers conceptualize and interpret AI models that they are not as familiar with. We end with what we believe are promising future opportunities for AI in oncology, with an eye towards allowing the data to inform us through unsupervised learning and generative models, rather than asking AI to perform specific functions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37684068</pmid><doi>10.1016/j.semradonc.2023.06.004</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-4296
ispartof Seminars in radiation oncology, 2023-10, Vol.33 (4), p.386-394
issn 1053-4296
1532-9461
1532-9461
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10880815
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Artificial Intelligence
Clinical Trials as Topic
Humans
Machine Learning
Medical Oncology
Neoplasms - therapy
Prospective Studies
title Integrating Artificial Intelligence and Machine Learning Into Cancer Clinical Trials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Artificial%20Intelligence%20and%20Machine%20Learning%20Into%20Cancer%20Clinical%20Trials&rft.jtitle=Seminars%20in%20radiation%20oncology&rft.au=Kang,%20John&rft.date=2023-10&rft.volume=33&rft.issue=4&rft.spage=386&rft.epage=394&rft.pages=386-394&rft.issn=1053-4296&rft.eissn=1532-9461&rft_id=info:doi/10.1016/j.semradonc.2023.06.004&rft_dat=%3Cproquest_pubme%3E2863296459%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863296459&rft_id=info:pmid/37684068&rft_els_id=S1053429623000413&rfr_iscdi=true