Accurate Host–Guest Binding Free Energies Using the AMOEBA Polarizable Force Field

A grand challenge of computational biophysics is accurate prediction of interactions between molecules. Molecular dynamics (MD) simulations have recently gained much interest as a tool to directly compute rigorous intermolecular binding affinities. The choice of a fixed point-charge or polarizable m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2023-05, Vol.63 (9), p.2769-2782
Hauptverfasser: Chung, Moses K. J., Miller, Ryan J., Novak, Borna, Wang, Zhi, Ponder, Jay W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2782
container_issue 9
container_start_page 2769
container_title Journal of chemical information and modeling
container_volume 63
creator Chung, Moses K. J.
Miller, Ryan J.
Novak, Borna
Wang, Zhi
Ponder, Jay W.
description A grand challenge of computational biophysics is accurate prediction of interactions between molecules. Molecular dynamics (MD) simulations have recently gained much interest as a tool to directly compute rigorous intermolecular binding affinities. The choice of a fixed point-charge or polarizable multipole force field used in MD is a topic of ongoing discussion. To compare alternative methods, we participated in the SAMPL7 and SAMPL8 Gibb octaacid host–guest challenges to assess the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) polarizable multipole force field. Advantages of AMOEBA over fixed charge models include improved representation of molecular electrostatic potentials and better description of water occupying the unligated host cavity. Prospective predictions for 26 host–guest systems exhibit a mean unsigned error vs experiment of 0.848 kcal/mol across all absolute binding free energies, demonstrating excellent agreement between computational and experimental results. In addition, we explore two topics related to the inclusion of ions in MD simulations: use of a neutral co-alchemical protocol and the effect of salt concentration on binding affinity. Use of the co-alchemical method minimally affects computed energies, but salt concentration significantly perturbs our binding results. Higher salt concentration strengthens binding through classical charge screening. In particular, added Na+ ions screen negatively charged carboxylate groups near the binding cavity, thereby diminishing repulsive coulomb interactions with negatively charged guests. Overall, the AMOEBA results demonstrate the accuracy available through a force field providing a detailed energetic description of the four octaacid hosts and 13 charged organic guests. Use of the AMOEBA polarizable atomic multipole force field in conjunction with an alchemical free energy protocol can achieve chemical accuracy in application to realistic molecular systems.
doi_str_mv 10.1021/acs.jcim.3c00155
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10878370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803964899</sourcerecordid><originalsourceid>FETCH-LOGICAL-a420t-88476b59defa5a506b93e0e724ca100e77b27d132a117acf36ef867e044c2723</originalsourceid><addsrcrecordid>eNp1kc1OGzEUha2qVflp912hkbphQdJre2Zsr6qAEkCiootU6s7yeO4ER5MxtWcqlRXvwBvyJDgkQbRSN_aV_d1jn3sI-URhTIHRL8bG8dK61ZhbAFoUb8g-LXI1UiX8fLurC1XukYMYlwCcq5K9J3tcgCiElPtkPrF2CKbH7MLH_vH-4XzA2Genrqtdt8hmATGbdhgWDmP2I67P-hvMJt-up6eT7LtvTXB3pmoxm_lg0-qwrT-Qd41pI37c7odkPpvOzy5GV9fnl2eTq5HJGfQjKXNRVoWqsTGFKaCsFEdAwXJrKKRCVEzUlDNDqTC24SU2shQIeW6ZYPyQfN3I3g7VCmuLXR9Mq2-DW5nwR3vj9N83nbvRC_9bU5BCphkkheOtQvC_1sb1ykWLbWs69EPUTEKaWC6VSujnf9ClH0KX7CWKUia4ehaEDWWDjzFg8_IbCnodmU6R6XVkehtZajl67eKlYZdRAk42wHPr7tH_6j0B_zuibA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811273970</pqid></control><display><type>article</type><title>Accurate Host–Guest Binding Free Energies Using the AMOEBA Polarizable Force Field</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Chung, Moses K. J. ; Miller, Ryan J. ; Novak, Borna ; Wang, Zhi ; Ponder, Jay W.</creator><creatorcontrib>Chung, Moses K. J. ; Miller, Ryan J. ; Novak, Borna ; Wang, Zhi ; Ponder, Jay W.</creatorcontrib><description>A grand challenge of computational biophysics is accurate prediction of interactions between molecules. Molecular dynamics (MD) simulations have recently gained much interest as a tool to directly compute rigorous intermolecular binding affinities. The choice of a fixed point-charge or polarizable multipole force field used in MD is a topic of ongoing discussion. To compare alternative methods, we participated in the SAMPL7 and SAMPL8 Gibb octaacid host–guest challenges to assess the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) polarizable multipole force field. Advantages of AMOEBA over fixed charge models include improved representation of molecular electrostatic potentials and better description of water occupying the unligated host cavity. Prospective predictions for 26 host–guest systems exhibit a mean unsigned error vs experiment of 0.848 kcal/mol across all absolute binding free energies, demonstrating excellent agreement between computational and experimental results. In addition, we explore two topics related to the inclusion of ions in MD simulations: use of a neutral co-alchemical protocol and the effect of salt concentration on binding affinity. Use of the co-alchemical method minimally affects computed energies, but salt concentration significantly perturbs our binding results. Higher salt concentration strengthens binding through classical charge screening. In particular, added Na+ ions screen negatively charged carboxylate groups near the binding cavity, thereby diminishing repulsive coulomb interactions with negatively charged guests. Overall, the AMOEBA results demonstrate the accuracy available through a force field providing a detailed energetic description of the four octaacid hosts and 13 charged organic guests. Use of the AMOEBA polarizable atomic multipole force field in conjunction with an alchemical free energy protocol can achieve chemical accuracy in application to realistic molecular systems.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c00155</identifier><identifier>PMID: 37075788</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accuracy ; Affinity ; Amoeba ; Binding ; Biophysics ; Computational Biochemistry ; Free energy ; Molecular dynamics ; Molecular Dynamics Simulation ; Multipoles ; Prospective Studies ; Sodium Chloride ; Supramolecular compounds ; Thermodynamics ; Water - chemistry</subject><ispartof>Journal of chemical information and modeling, 2023-05, Vol.63 (9), p.2769-2782</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society May 8, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a420t-88476b59defa5a506b93e0e724ca100e77b27d132a117acf36ef867e044c2723</citedby><cites>FETCH-LOGICAL-a420t-88476b59defa5a506b93e0e724ca100e77b27d132a117acf36ef867e044c2723</cites><orcidid>0000-0002-9516-1477 ; 0000-0001-5450-9230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.3c00155$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.3c00155$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37075788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Moses K. J.</creatorcontrib><creatorcontrib>Miller, Ryan J.</creatorcontrib><creatorcontrib>Novak, Borna</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Ponder, Jay W.</creatorcontrib><title>Accurate Host–Guest Binding Free Energies Using the AMOEBA Polarizable Force Field</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>A grand challenge of computational biophysics is accurate prediction of interactions between molecules. Molecular dynamics (MD) simulations have recently gained much interest as a tool to directly compute rigorous intermolecular binding affinities. The choice of a fixed point-charge or polarizable multipole force field used in MD is a topic of ongoing discussion. To compare alternative methods, we participated in the SAMPL7 and SAMPL8 Gibb octaacid host–guest challenges to assess the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) polarizable multipole force field. Advantages of AMOEBA over fixed charge models include improved representation of molecular electrostatic potentials and better description of water occupying the unligated host cavity. Prospective predictions for 26 host–guest systems exhibit a mean unsigned error vs experiment of 0.848 kcal/mol across all absolute binding free energies, demonstrating excellent agreement between computational and experimental results. In addition, we explore two topics related to the inclusion of ions in MD simulations: use of a neutral co-alchemical protocol and the effect of salt concentration on binding affinity. Use of the co-alchemical method minimally affects computed energies, but salt concentration significantly perturbs our binding results. Higher salt concentration strengthens binding through classical charge screening. In particular, added Na+ ions screen negatively charged carboxylate groups near the binding cavity, thereby diminishing repulsive coulomb interactions with negatively charged guests. Overall, the AMOEBA results demonstrate the accuracy available through a force field providing a detailed energetic description of the four octaacid hosts and 13 charged organic guests. Use of the AMOEBA polarizable atomic multipole force field in conjunction with an alchemical free energy protocol can achieve chemical accuracy in application to realistic molecular systems.</description><subject>Accuracy</subject><subject>Affinity</subject><subject>Amoeba</subject><subject>Binding</subject><subject>Biophysics</subject><subject>Computational Biochemistry</subject><subject>Free energy</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Multipoles</subject><subject>Prospective Studies</subject><subject>Sodium Chloride</subject><subject>Supramolecular compounds</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1OGzEUha2qVflp912hkbphQdJre2Zsr6qAEkCiootU6s7yeO4ER5MxtWcqlRXvwBvyJDgkQbRSN_aV_d1jn3sI-URhTIHRL8bG8dK61ZhbAFoUb8g-LXI1UiX8fLurC1XukYMYlwCcq5K9J3tcgCiElPtkPrF2CKbH7MLH_vH-4XzA2Genrqtdt8hmATGbdhgWDmP2I67P-hvMJt-up6eT7LtvTXB3pmoxm_lg0-qwrT-Qd41pI37c7odkPpvOzy5GV9fnl2eTq5HJGfQjKXNRVoWqsTGFKaCsFEdAwXJrKKRCVEzUlDNDqTC24SU2shQIeW6ZYPyQfN3I3g7VCmuLXR9Mq2-DW5nwR3vj9N83nbvRC_9bU5BCphkkheOtQvC_1sb1ykWLbWs69EPUTEKaWC6VSujnf9ClH0KX7CWKUia4ehaEDWWDjzFg8_IbCnodmU6R6XVkehtZajl67eKlYZdRAk42wHPr7tH_6j0B_zuibA</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Chung, Moses K. J.</creator><creator>Miller, Ryan J.</creator><creator>Novak, Borna</creator><creator>Wang, Zhi</creator><creator>Ponder, Jay W.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9516-1477</orcidid><orcidid>https://orcid.org/0000-0001-5450-9230</orcidid></search><sort><creationdate>20230508</creationdate><title>Accurate Host–Guest Binding Free Energies Using the AMOEBA Polarizable Force Field</title><author>Chung, Moses K. J. ; Miller, Ryan J. ; Novak, Borna ; Wang, Zhi ; Ponder, Jay W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a420t-88476b59defa5a506b93e0e724ca100e77b27d132a117acf36ef867e044c2723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Affinity</topic><topic>Amoeba</topic><topic>Binding</topic><topic>Biophysics</topic><topic>Computational Biochemistry</topic><topic>Free energy</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Multipoles</topic><topic>Prospective Studies</topic><topic>Sodium Chloride</topic><topic>Supramolecular compounds</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Moses K. J.</creatorcontrib><creatorcontrib>Miller, Ryan J.</creatorcontrib><creatorcontrib>Novak, Borna</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Ponder, Jay W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Moses K. J.</au><au>Miller, Ryan J.</au><au>Novak, Borna</au><au>Wang, Zhi</au><au>Ponder, Jay W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Host–Guest Binding Free Energies Using the AMOEBA Polarizable Force Field</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2023-05-08</date><risdate>2023</risdate><volume>63</volume><issue>9</issue><spage>2769</spage><epage>2782</epage><pages>2769-2782</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>A grand challenge of computational biophysics is accurate prediction of interactions between molecules. Molecular dynamics (MD) simulations have recently gained much interest as a tool to directly compute rigorous intermolecular binding affinities. The choice of a fixed point-charge or polarizable multipole force field used in MD is a topic of ongoing discussion. To compare alternative methods, we participated in the SAMPL7 and SAMPL8 Gibb octaacid host–guest challenges to assess the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) polarizable multipole force field. Advantages of AMOEBA over fixed charge models include improved representation of molecular electrostatic potentials and better description of water occupying the unligated host cavity. Prospective predictions for 26 host–guest systems exhibit a mean unsigned error vs experiment of 0.848 kcal/mol across all absolute binding free energies, demonstrating excellent agreement between computational and experimental results. In addition, we explore two topics related to the inclusion of ions in MD simulations: use of a neutral co-alchemical protocol and the effect of salt concentration on binding affinity. Use of the co-alchemical method minimally affects computed energies, but salt concentration significantly perturbs our binding results. Higher salt concentration strengthens binding through classical charge screening. In particular, added Na+ ions screen negatively charged carboxylate groups near the binding cavity, thereby diminishing repulsive coulomb interactions with negatively charged guests. Overall, the AMOEBA results demonstrate the accuracy available through a force field providing a detailed energetic description of the four octaacid hosts and 13 charged organic guests. Use of the AMOEBA polarizable atomic multipole force field in conjunction with an alchemical free energy protocol can achieve chemical accuracy in application to realistic molecular systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37075788</pmid><doi>10.1021/acs.jcim.3c00155</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9516-1477</orcidid><orcidid>https://orcid.org/0000-0001-5450-9230</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2023-05, Vol.63 (9), p.2769-2782
issn 1549-9596
1549-960X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10878370
source MEDLINE; American Chemical Society Journals
subjects Accuracy
Affinity
Amoeba
Binding
Biophysics
Computational Biochemistry
Free energy
Molecular dynamics
Molecular Dynamics Simulation
Multipoles
Prospective Studies
Sodium Chloride
Supramolecular compounds
Thermodynamics
Water - chemistry
title Accurate Host–Guest Binding Free Energies Using the AMOEBA Polarizable Force Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Host%E2%80%93Guest%20Binding%20Free%20Energies%20Using%20the%20AMOEBA%20Polarizable%20Force%20Field&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Chung,%20Moses%20K.%20J.&rft.date=2023-05-08&rft.volume=63&rft.issue=9&rft.spage=2769&rft.epage=2782&rft.pages=2769-2782&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c00155&rft_dat=%3Cproquest_pubme%3E2803964899%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811273970&rft_id=info:pmid/37075788&rfr_iscdi=true