Focal stimulation of retinal ganglion cells using subretinal 3D microelectrodes with peripheral electrodes of opposite current

Subretinal prostheses have been developed to stimulate survived retinal ganglion cells (RGCs), indirectly following the physiological visual pathways. However, current spreading from the prosthesis electrode causes the activation of unintended RGCs, thereby limiting the spatial resolution of artific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical engineering letters 2024-03, Vol.14 (2), p.355-365
Hauptverfasser: Seo, Hee Won, Cha, Seongkwang, Jeong, Yurim, Ahn, Jungryul, Lee, Kyeong Jae, Kim, Sohee, Goo, Yong Sook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue 2
container_start_page 355
container_title Biomedical engineering letters
container_volume 14
creator Seo, Hee Won
Cha, Seongkwang
Jeong, Yurim
Ahn, Jungryul
Lee, Kyeong Jae
Kim, Sohee
Goo, Yong Sook
description Subretinal prostheses have been developed to stimulate survived retinal ganglion cells (RGCs), indirectly following the physiological visual pathways. However, current spreading from the prosthesis electrode causes the activation of unintended RGCs, thereby limiting the spatial resolution of artificial vision. This study proposes a strategy for focal stimulation of RGCs using a subretinal electrode array, in which six hexagonally arranged peripheral electrodes surround a stimulating electrode. RGCs in an in-vitro condition were subretinally stimulated using a fabricated electrode array coated with iridium oxide, following the three different stimulation configurations (with no peripheral, six electrodes of opposite current, and six ground). In-vitro experiments showed that the stimulation with six electrodes of opposite current was most effective in controlling RGC responses with a high spatial resolution. The results suggest that the effective utilization of return electrodes, such as by applying an opposite current to them, could help reduce current spreading beyond the local area targeted for stimulation and elicit RGC responses only in the vicinity of the stimulating electrode.
doi_str_mv 10.1007/s13534-023-00342-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10874361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928854828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-fd633b8c6260944790062d3f1ae5f6dc6c009472bd2620f3a4601c54a35e45643</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EolXpC3BAlrhwCYw9tuOcECoUkCpxAYmb5XWcrKskDnZSxIVnx0vapXDAF1sz3_wznp-QpwxeMoD6VWYoUVTAsQJAwSt8QE45NFg1Wn59eHwrfULOc76GciSTDeJjcoIaa9EAOyU_L6OzA81LGNfBLiFONHY0-SVMJdzbqR8OMeeHIdM1h6mned3d5fEtHYNL0Q_eLSm2PtPvYdnT2acw730qyL1UEY7zHHNYPHVrSn5anpBHnR2yP7-9z8iXy3efLz5UV5_ef7x4c1U5gWypulYh7rRTXEEjRN0AKN5ix6yXnWqdclDiNd-1XHHo0AoFzElhUXohlcAz8nrTndfd6FtXWpfhzJzCaNMPE20wf2emsDd9vDEMdC1QsaLw4lYhxW-rz4sZQz6sxU4-rtnwhmsthea6oM__Qa_jmsq-NgoYMlCF4htV9pdz8t1xGgbmYLHZLDbFYvPbYoOl6Nn9fxxL7gwtAG5ALqmp9-lP7__I_gIK_LOs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928013106</pqid></control><display><type>article</type><title>Focal stimulation of retinal ganglion cells using subretinal 3D microelectrodes with peripheral electrodes of opposite current</title><source>SpringerLink Journals</source><creator>Seo, Hee Won ; Cha, Seongkwang ; Jeong, Yurim ; Ahn, Jungryul ; Lee, Kyeong Jae ; Kim, Sohee ; Goo, Yong Sook</creator><creatorcontrib>Seo, Hee Won ; Cha, Seongkwang ; Jeong, Yurim ; Ahn, Jungryul ; Lee, Kyeong Jae ; Kim, Sohee ; Goo, Yong Sook</creatorcontrib><description>Subretinal prostheses have been developed to stimulate survived retinal ganglion cells (RGCs), indirectly following the physiological visual pathways. However, current spreading from the prosthesis electrode causes the activation of unintended RGCs, thereby limiting the spatial resolution of artificial vision. This study proposes a strategy for focal stimulation of RGCs using a subretinal electrode array, in which six hexagonally arranged peripheral electrodes surround a stimulating electrode. RGCs in an in-vitro condition were subretinally stimulated using a fabricated electrode array coated with iridium oxide, following the three different stimulation configurations (with no peripheral, six electrodes of opposite current, and six ground). In-vitro experiments showed that the stimulation with six electrodes of opposite current was most effective in controlling RGC responses with a high spatial resolution. The results suggest that the effective utilization of return electrodes, such as by applying an opposite current to them, could help reduce current spreading beyond the local area targeted for stimulation and elicit RGC responses only in the vicinity of the stimulating electrode.</description><identifier>ISSN: 2093-9868</identifier><identifier>ISSN: 2093-985X</identifier><identifier>EISSN: 2093-985X</identifier><identifier>DOI: 10.1007/s13534-023-00342-3</identifier><identifier>PMID: 38374901</identifier><language>eng</language><publisher>Korea: The Korean Society of Medical and Biological Engineering</publisher><subject>Arrays ; Artificial vision ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Electrodes ; Engineering ; Iridium network ; Medical and Radiation Physics ; Microelectrodes ; Original ; Original Article ; Prostheses ; Prosthetics ; Retina ; Retinal ganglion cells ; Sensory stimulation ; Spatial discrimination ; Spatial resolution ; Visual pathways</subject><ispartof>Biomedical engineering letters, 2024-03, Vol.14 (2), p.355-365</ispartof><rights>Korean Society of Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-fd633b8c6260944790062d3f1ae5f6dc6c009472bd2620f3a4601c54a35e45643</citedby><cites>FETCH-LOGICAL-c431t-fd633b8c6260944790062d3f1ae5f6dc6c009472bd2620f3a4601c54a35e45643</cites><orcidid>0000-0002-3825-4466 ; 0000-0003-0646-9806 ; 0000-0002-0859-2368 ; 0000-0001-7197-9795 ; 0000-0002-2235-3312 ; 0000-0001-6885-5476 ; 0000-0002-4926-8978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13534-023-00342-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13534-023-00342-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38374901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seo, Hee Won</creatorcontrib><creatorcontrib>Cha, Seongkwang</creatorcontrib><creatorcontrib>Jeong, Yurim</creatorcontrib><creatorcontrib>Ahn, Jungryul</creatorcontrib><creatorcontrib>Lee, Kyeong Jae</creatorcontrib><creatorcontrib>Kim, Sohee</creatorcontrib><creatorcontrib>Goo, Yong Sook</creatorcontrib><title>Focal stimulation of retinal ganglion cells using subretinal 3D microelectrodes with peripheral electrodes of opposite current</title><title>Biomedical engineering letters</title><addtitle>Biomed. Eng. Lett</addtitle><addtitle>Biomed Eng Lett</addtitle><description>Subretinal prostheses have been developed to stimulate survived retinal ganglion cells (RGCs), indirectly following the physiological visual pathways. However, current spreading from the prosthesis electrode causes the activation of unintended RGCs, thereby limiting the spatial resolution of artificial vision. This study proposes a strategy for focal stimulation of RGCs using a subretinal electrode array, in which six hexagonally arranged peripheral electrodes surround a stimulating electrode. RGCs in an in-vitro condition were subretinally stimulated using a fabricated electrode array coated with iridium oxide, following the three different stimulation configurations (with no peripheral, six electrodes of opposite current, and six ground). In-vitro experiments showed that the stimulation with six electrodes of opposite current was most effective in controlling RGC responses with a high spatial resolution. The results suggest that the effective utilization of return electrodes, such as by applying an opposite current to them, could help reduce current spreading beyond the local area targeted for stimulation and elicit RGC responses only in the vicinity of the stimulating electrode.</description><subject>Arrays</subject><subject>Artificial vision</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Iridium network</subject><subject>Medical and Radiation Physics</subject><subject>Microelectrodes</subject><subject>Original</subject><subject>Original Article</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Retina</subject><subject>Retinal ganglion cells</subject><subject>Sensory stimulation</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Visual pathways</subject><issn>2093-9868</issn><issn>2093-985X</issn><issn>2093-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi0EolXpC3BAlrhwCYw9tuOcECoUkCpxAYmb5XWcrKskDnZSxIVnx0vapXDAF1sz3_wznp-QpwxeMoD6VWYoUVTAsQJAwSt8QE45NFg1Wn59eHwrfULOc76GciSTDeJjcoIaa9EAOyU_L6OzA81LGNfBLiFONHY0-SVMJdzbqR8OMeeHIdM1h6mned3d5fEtHYNL0Q_eLSm2PtPvYdnT2acw730qyL1UEY7zHHNYPHVrSn5anpBHnR2yP7-9z8iXy3efLz5UV5_ef7x4c1U5gWypulYh7rRTXEEjRN0AKN5ix6yXnWqdclDiNd-1XHHo0AoFzElhUXohlcAz8nrTndfd6FtXWpfhzJzCaNMPE20wf2emsDd9vDEMdC1QsaLw4lYhxW-rz4sZQz6sxU4-rtnwhmsthea6oM__Qa_jmsq-NgoYMlCF4htV9pdz8t1xGgbmYLHZLDbFYvPbYoOl6Nn9fxxL7gwtAG5ALqmp9-lP7__I_gIK_LOs</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Seo, Hee Won</creator><creator>Cha, Seongkwang</creator><creator>Jeong, Yurim</creator><creator>Ahn, Jungryul</creator><creator>Lee, Kyeong Jae</creator><creator>Kim, Sohee</creator><creator>Goo, Yong Sook</creator><general>The Korean Society of Medical and Biological Engineering</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3825-4466</orcidid><orcidid>https://orcid.org/0000-0003-0646-9806</orcidid><orcidid>https://orcid.org/0000-0002-0859-2368</orcidid><orcidid>https://orcid.org/0000-0001-7197-9795</orcidid><orcidid>https://orcid.org/0000-0002-2235-3312</orcidid><orcidid>https://orcid.org/0000-0001-6885-5476</orcidid><orcidid>https://orcid.org/0000-0002-4926-8978</orcidid></search><sort><creationdate>20240301</creationdate><title>Focal stimulation of retinal ganglion cells using subretinal 3D microelectrodes with peripheral electrodes of opposite current</title><author>Seo, Hee Won ; Cha, Seongkwang ; Jeong, Yurim ; Ahn, Jungryul ; Lee, Kyeong Jae ; Kim, Sohee ; Goo, Yong Sook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-fd633b8c6260944790062d3f1ae5f6dc6c009472bd2620f3a4601c54a35e45643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Artificial vision</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Iridium network</topic><topic>Medical and Radiation Physics</topic><topic>Microelectrodes</topic><topic>Original</topic><topic>Original Article</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Retina</topic><topic>Retinal ganglion cells</topic><topic>Sensory stimulation</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Visual pathways</topic><toplevel>online_resources</toplevel><creatorcontrib>Seo, Hee Won</creatorcontrib><creatorcontrib>Cha, Seongkwang</creatorcontrib><creatorcontrib>Jeong, Yurim</creatorcontrib><creatorcontrib>Ahn, Jungryul</creatorcontrib><creatorcontrib>Lee, Kyeong Jae</creatorcontrib><creatorcontrib>Kim, Sohee</creatorcontrib><creatorcontrib>Goo, Yong Sook</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical engineering letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Hee Won</au><au>Cha, Seongkwang</au><au>Jeong, Yurim</au><au>Ahn, Jungryul</au><au>Lee, Kyeong Jae</au><au>Kim, Sohee</au><au>Goo, Yong Sook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Focal stimulation of retinal ganglion cells using subretinal 3D microelectrodes with peripheral electrodes of opposite current</atitle><jtitle>Biomedical engineering letters</jtitle><stitle>Biomed. Eng. Lett</stitle><addtitle>Biomed Eng Lett</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>14</volume><issue>2</issue><spage>355</spage><epage>365</epage><pages>355-365</pages><issn>2093-9868</issn><issn>2093-985X</issn><eissn>2093-985X</eissn><abstract>Subretinal prostheses have been developed to stimulate survived retinal ganglion cells (RGCs), indirectly following the physiological visual pathways. However, current spreading from the prosthesis electrode causes the activation of unintended RGCs, thereby limiting the spatial resolution of artificial vision. This study proposes a strategy for focal stimulation of RGCs using a subretinal electrode array, in which six hexagonally arranged peripheral electrodes surround a stimulating electrode. RGCs in an in-vitro condition were subretinally stimulated using a fabricated electrode array coated with iridium oxide, following the three different stimulation configurations (with no peripheral, six electrodes of opposite current, and six ground). In-vitro experiments showed that the stimulation with six electrodes of opposite current was most effective in controlling RGC responses with a high spatial resolution. The results suggest that the effective utilization of return electrodes, such as by applying an opposite current to them, could help reduce current spreading beyond the local area targeted for stimulation and elicit RGC responses only in the vicinity of the stimulating electrode.</abstract><cop>Korea</cop><pub>The Korean Society of Medical and Biological Engineering</pub><pmid>38374901</pmid><doi>10.1007/s13534-023-00342-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3825-4466</orcidid><orcidid>https://orcid.org/0000-0003-0646-9806</orcidid><orcidid>https://orcid.org/0000-0002-0859-2368</orcidid><orcidid>https://orcid.org/0000-0001-7197-9795</orcidid><orcidid>https://orcid.org/0000-0002-2235-3312</orcidid><orcidid>https://orcid.org/0000-0001-6885-5476</orcidid><orcidid>https://orcid.org/0000-0002-4926-8978</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2093-9868
ispartof Biomedical engineering letters, 2024-03, Vol.14 (2), p.355-365
issn 2093-9868
2093-985X
2093-985X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10874361
source SpringerLink Journals
subjects Arrays
Artificial vision
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Electrodes
Engineering
Iridium network
Medical and Radiation Physics
Microelectrodes
Original
Original Article
Prostheses
Prosthetics
Retina
Retinal ganglion cells
Sensory stimulation
Spatial discrimination
Spatial resolution
Visual pathways
title Focal stimulation of retinal ganglion cells using subretinal 3D microelectrodes with peripheral electrodes of opposite current
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Focal%20stimulation%20of%20retinal%20ganglion%20cells%20using%20subretinal%203D%20microelectrodes%20with%20peripheral%20electrodes%20of%20opposite%20current&rft.jtitle=Biomedical%20engineering%20letters&rft.au=Seo,%20Hee%20Won&rft.date=2024-03-01&rft.volume=14&rft.issue=2&rft.spage=355&rft.epage=365&rft.pages=355-365&rft.issn=2093-9868&rft.eissn=2093-985X&rft_id=info:doi/10.1007/s13534-023-00342-3&rft_dat=%3Cproquest_pubme%3E2928854828%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928013106&rft_id=info:pmid/38374901&rfr_iscdi=true