Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies

Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on othe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2023-12, Vol.33 (23), p.5160-5168.e7
Hauptverfasser: Yang, Lu, Borne, Flora, Betz, Anja, Aardema, Matthew L., Zhen, Ying, Peng, Julie, Visconti, Regina, Wu, Mariana, Roland, Bartholomew P., Talsma, Aaron D., Palladino, Michael J., Petschenka, Georg, Andolfatto, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5168.e7
container_issue 23
container_start_page 5160
container_title Current biology
container_volume 33
creator Yang, Lu
Borne, Flora
Betz, Anja
Aardema, Matthew L.
Zhen, Ying
Peng, Julie
Visconti, Regina
Wu, Mariana
Roland, Bartholomew P.
Talsma, Aaron D.
Palladino, Michael J.
Petschenka, Georg
Andolfatto, Peter
description Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies and gene editing in Drosophila, we find that the initial steps toward resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. By contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as a predator of toxic firefly prey. [Display omitted] •To obtain defensive lucibufagin toxins, Photuris fireflies predate other fireflies•Photuris have evolved ATPα1 paralogs with increasing levels of toxin resistance•Firefly genera that synthesize toxins internally retain a single resistant ATPα1•Drosophila engineering reveals major determinants of toxin resistance in fireflies Animal species that obtain defensive toxins from their diet are likely to face distinct physiological challenges from species that synthesize toxins internally. Yang et al. reveal that fireflies that produce toxins internally and fireflies that have specialized to predate them have evolved toxin-resistant Na+,K+-ATPases via distinct mechanisms.
doi_str_mv 10.1016/j.cub.2023.10.063
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10872512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982223014641</els_id><sourcerecordid>3040397523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-887a53bbef5203d41a495f67671393b6b13af5aade389033458643fa40fb6bb63</originalsourceid><addsrcrecordid>eNqFkcuOEzEQRS0EYsLAB7BBXrLp4HfbYoHQiJc0Eixgbbnt6omjTjvYTov8PQ4JI9jAynLVrauqexB6TsmaEqpebdf-MKwZYbz910TxB2hFdW86IoR8iFbEKNIZzdgVelLKlhDKtFGP0RXvjTacmBUavmQIrqZ8xGPMME4RCnZzwHUDMeOafkR_6RzxPsMRb9wCGJY0LRBwiKXG2ddfwhlnKK3gZg-41Owq3DW7p-jR6KYCzy7vNfr2_t3Xm4_d7ecPn27e3nZeaFk7rXsn-TDAKBnhQVAnjBxVr3rKDR_UQLkbpXMBuDaEcyG1Enx0goytOSh-jd6cffeHYQfBw9xWmOw-x53LR5tctH935rixd2mxlOieScqaw8uLQ07fD1Cq3cXiYZrcDOlQLCeCcNNLxv8rbUEzpSilpEnpWepzKqUleb8SJfbE0W5t42hPHE-lxrHNvPjzlvuJ3-Ca4PVZAC3RJUK2xUdowYfGylcbUvyH_U-mz7Ad</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892661110</pqid></control><display><type>article</type><title>Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies</title><source>MEDLINE</source><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Yang, Lu ; Borne, Flora ; Betz, Anja ; Aardema, Matthew L. ; Zhen, Ying ; Peng, Julie ; Visconti, Regina ; Wu, Mariana ; Roland, Bartholomew P. ; Talsma, Aaron D. ; Palladino, Michael J. ; Petschenka, Georg ; Andolfatto, Peter</creator><creatorcontrib>Yang, Lu ; Borne, Flora ; Betz, Anja ; Aardema, Matthew L. ; Zhen, Ying ; Peng, Julie ; Visconti, Regina ; Wu, Mariana ; Roland, Bartholomew P. ; Talsma, Aaron D. ; Palladino, Michael J. ; Petschenka, Georg ; Andolfatto, Peter</creatorcontrib><description>Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies and gene editing in Drosophila, we find that the initial steps toward resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. By contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as a predator of toxic firefly prey. [Display omitted] •To obtain defensive lucibufagin toxins, Photuris fireflies predate other fireflies•Photuris have evolved ATPα1 paralogs with increasing levels of toxin resistance•Firefly genera that synthesize toxins internally retain a single resistant ATPα1•Drosophila engineering reveals major determinants of toxin resistance in fireflies Animal species that obtain defensive toxins from their diet are likely to face distinct physiological challenges from species that synthesize toxins internally. Yang et al. reveal that fireflies that produce toxins internally and fireflies that have specialized to predate them have evolved toxin-resistant Na+,K+-ATPases via distinct mechanisms.</description><identifier>ISSN: 0960-9822</identifier><identifier>ISSN: 1879-0445</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2023.10.063</identifier><identifier>PMID: 37989309</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; Biological Evolution ; compensatory evolution ; compensatory substitutions ; Drosophila ; enzymes ; Fireflies ; gene duplication ; genes ; genus ; Photuris ; physiology ; predation ; Predatory Behavior ; species ; target-site insensitivity ; toxicity ; toxins</subject><ispartof>Current biology, 2023-12, Vol.33 (23), p.5160-5168.e7</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-887a53bbef5203d41a495f67671393b6b13af5aade389033458643fa40fb6bb63</citedby><cites>FETCH-LOGICAL-c485t-887a53bbef5203d41a495f67671393b6b13af5aade389033458643fa40fb6bb63</cites><orcidid>0000-0003-3393-4574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982223014641$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37989309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Borne, Flora</creatorcontrib><creatorcontrib>Betz, Anja</creatorcontrib><creatorcontrib>Aardema, Matthew L.</creatorcontrib><creatorcontrib>Zhen, Ying</creatorcontrib><creatorcontrib>Peng, Julie</creatorcontrib><creatorcontrib>Visconti, Regina</creatorcontrib><creatorcontrib>Wu, Mariana</creatorcontrib><creatorcontrib>Roland, Bartholomew P.</creatorcontrib><creatorcontrib>Talsma, Aaron D.</creatorcontrib><creatorcontrib>Palladino, Michael J.</creatorcontrib><creatorcontrib>Petschenka, Georg</creatorcontrib><creatorcontrib>Andolfatto, Peter</creatorcontrib><title>Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies and gene editing in Drosophila, we find that the initial steps toward resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. By contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as a predator of toxic firefly prey. [Display omitted] •To obtain defensive lucibufagin toxins, Photuris fireflies predate other fireflies•Photuris have evolved ATPα1 paralogs with increasing levels of toxin resistance•Firefly genera that synthesize toxins internally retain a single resistant ATPα1•Drosophila engineering reveals major determinants of toxin resistance in fireflies Animal species that obtain defensive toxins from their diet are likely to face distinct physiological challenges from species that synthesize toxins internally. Yang et al. reveal that fireflies that produce toxins internally and fireflies that have specialized to predate them have evolved toxin-resistant Na+,K+-ATPases via distinct mechanisms.</description><subject>Animals</subject><subject>Biological Evolution</subject><subject>compensatory evolution</subject><subject>compensatory substitutions</subject><subject>Drosophila</subject><subject>enzymes</subject><subject>Fireflies</subject><subject>gene duplication</subject><subject>genes</subject><subject>genus</subject><subject>Photuris</subject><subject>physiology</subject><subject>predation</subject><subject>Predatory Behavior</subject><subject>species</subject><subject>target-site insensitivity</subject><subject>toxicity</subject><subject>toxins</subject><issn>0960-9822</issn><issn>1879-0445</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcuOEzEQRS0EYsLAB7BBXrLp4HfbYoHQiJc0Eixgbbnt6omjTjvYTov8PQ4JI9jAynLVrauqexB6TsmaEqpebdf-MKwZYbz910TxB2hFdW86IoR8iFbEKNIZzdgVelLKlhDKtFGP0RXvjTacmBUavmQIrqZ8xGPMME4RCnZzwHUDMeOafkR_6RzxPsMRb9wCGJY0LRBwiKXG2ddfwhlnKK3gZg-41Owq3DW7p-jR6KYCzy7vNfr2_t3Xm4_d7ecPn27e3nZeaFk7rXsn-TDAKBnhQVAnjBxVr3rKDR_UQLkbpXMBuDaEcyG1Enx0goytOSh-jd6cffeHYQfBw9xWmOw-x53LR5tctH935rixd2mxlOieScqaw8uLQ07fD1Cq3cXiYZrcDOlQLCeCcNNLxv8rbUEzpSilpEnpWepzKqUleb8SJfbE0W5t42hPHE-lxrHNvPjzlvuJ3-Ca4PVZAC3RJUK2xUdowYfGylcbUvyH_U-mz7Ad</recordid><startdate>20231204</startdate><enddate>20231204</enddate><creator>Yang, Lu</creator><creator>Borne, Flora</creator><creator>Betz, Anja</creator><creator>Aardema, Matthew L.</creator><creator>Zhen, Ying</creator><creator>Peng, Julie</creator><creator>Visconti, Regina</creator><creator>Wu, Mariana</creator><creator>Roland, Bartholomew P.</creator><creator>Talsma, Aaron D.</creator><creator>Palladino, Michael J.</creator><creator>Petschenka, Georg</creator><creator>Andolfatto, Peter</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3393-4574</orcidid></search><sort><creationdate>20231204</creationdate><title>Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies</title><author>Yang, Lu ; Borne, Flora ; Betz, Anja ; Aardema, Matthew L. ; Zhen, Ying ; Peng, Julie ; Visconti, Regina ; Wu, Mariana ; Roland, Bartholomew P. ; Talsma, Aaron D. ; Palladino, Michael J. ; Petschenka, Georg ; Andolfatto, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-887a53bbef5203d41a495f67671393b6b13af5aade389033458643fa40fb6bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biological Evolution</topic><topic>compensatory evolution</topic><topic>compensatory substitutions</topic><topic>Drosophila</topic><topic>enzymes</topic><topic>Fireflies</topic><topic>gene duplication</topic><topic>genes</topic><topic>genus</topic><topic>Photuris</topic><topic>physiology</topic><topic>predation</topic><topic>Predatory Behavior</topic><topic>species</topic><topic>target-site insensitivity</topic><topic>toxicity</topic><topic>toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Borne, Flora</creatorcontrib><creatorcontrib>Betz, Anja</creatorcontrib><creatorcontrib>Aardema, Matthew L.</creatorcontrib><creatorcontrib>Zhen, Ying</creatorcontrib><creatorcontrib>Peng, Julie</creatorcontrib><creatorcontrib>Visconti, Regina</creatorcontrib><creatorcontrib>Wu, Mariana</creatorcontrib><creatorcontrib>Roland, Bartholomew P.</creatorcontrib><creatorcontrib>Talsma, Aaron D.</creatorcontrib><creatorcontrib>Palladino, Michael J.</creatorcontrib><creatorcontrib>Petschenka, Georg</creatorcontrib><creatorcontrib>Andolfatto, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lu</au><au>Borne, Flora</au><au>Betz, Anja</au><au>Aardema, Matthew L.</au><au>Zhen, Ying</au><au>Peng, Julie</au><au>Visconti, Regina</au><au>Wu, Mariana</au><au>Roland, Bartholomew P.</au><au>Talsma, Aaron D.</au><au>Palladino, Michael J.</au><au>Petschenka, Georg</au><au>Andolfatto, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2023-12-04</date><risdate>2023</risdate><volume>33</volume><issue>23</issue><spage>5160</spage><epage>5168.e7</epage><pages>5160-5168.e7</pages><issn>0960-9822</issn><issn>1879-0445</issn><eissn>1879-0445</eissn><abstract>Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies and gene editing in Drosophila, we find that the initial steps toward resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. By contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as a predator of toxic firefly prey. [Display omitted] •To obtain defensive lucibufagin toxins, Photuris fireflies predate other fireflies•Photuris have evolved ATPα1 paralogs with increasing levels of toxin resistance•Firefly genera that synthesize toxins internally retain a single resistant ATPα1•Drosophila engineering reveals major determinants of toxin resistance in fireflies Animal species that obtain defensive toxins from their diet are likely to face distinct physiological challenges from species that synthesize toxins internally. Yang et al. reveal that fireflies that produce toxins internally and fireflies that have specialized to predate them have evolved toxin-resistant Na+,K+-ATPases via distinct mechanisms.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>37989309</pmid><doi>10.1016/j.cub.2023.10.063</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3393-4574</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2023-12, Vol.33 (23), p.5160-5168.e7
issn 0960-9822
1879-0445
1879-0445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10872512
source MEDLINE; Cell Press Archives; Elsevier ScienceDirect Journals; EZB Electronic Journals Library
subjects Animals
Biological Evolution
compensatory evolution
compensatory substitutions
Drosophila
enzymes
Fireflies
gene duplication
genes
genus
Photuris
physiology
predation
Predatory Behavior
species
target-site insensitivity
toxicity
toxins
title Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predatory%20fireflies%20and%20their%20toxic%20firefly%20prey%20have%20evolved%20distinct%20toxin%20resistance%20strategies&rft.jtitle=Current%20biology&rft.au=Yang,%20Lu&rft.date=2023-12-04&rft.volume=33&rft.issue=23&rft.spage=5160&rft.epage=5168.e7&rft.pages=5160-5168.e7&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2023.10.063&rft_dat=%3Cproquest_pubme%3E3040397523%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892661110&rft_id=info:pmid/37989309&rft_els_id=S0960982223014641&rfr_iscdi=true