Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies
Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on othe...
Gespeichert in:
Veröffentlicht in: | Current biology 2023-12, Vol.33 (23), p.5160-5168.e7 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5168.e7 |
---|---|
container_issue | 23 |
container_start_page | 5160 |
container_title | Current biology |
container_volume | 33 |
creator | Yang, Lu Borne, Flora Betz, Anja Aardema, Matthew L. Zhen, Ying Peng, Julie Visconti, Regina Wu, Mariana Roland, Bartholomew P. Talsma, Aaron D. Palladino, Michael J. Petschenka, Georg Andolfatto, Peter |
description | Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies and gene editing in Drosophila, we find that the initial steps toward resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. By contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as a predator of toxic firefly prey.
[Display omitted]
•To obtain defensive lucibufagin toxins, Photuris fireflies predate other fireflies•Photuris have evolved ATPα1 paralogs with increasing levels of toxin resistance•Firefly genera that synthesize toxins internally retain a single resistant ATPα1•Drosophila engineering reveals major determinants of toxin resistance in fireflies
Animal species that obtain defensive toxins from their diet are likely to face distinct physiological challenges from species that synthesize toxins internally. Yang et al. reveal that fireflies that produce toxins internally and fireflies that have specialized to predate them have evolved toxin-resistant Na+,K+-ATPases via distinct mechanisms. |
doi_str_mv | 10.1016/j.cub.2023.10.063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10872512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982223014641</els_id><sourcerecordid>3040397523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-887a53bbef5203d41a495f67671393b6b13af5aade389033458643fa40fb6bb63</originalsourceid><addsrcrecordid>eNqFkcuOEzEQRS0EYsLAB7BBXrLp4HfbYoHQiJc0Eixgbbnt6omjTjvYTov8PQ4JI9jAynLVrauqexB6TsmaEqpebdf-MKwZYbz910TxB2hFdW86IoR8iFbEKNIZzdgVelLKlhDKtFGP0RXvjTacmBUavmQIrqZ8xGPMME4RCnZzwHUDMeOafkR_6RzxPsMRb9wCGJY0LRBwiKXG2ddfwhlnKK3gZg-41Owq3DW7p-jR6KYCzy7vNfr2_t3Xm4_d7ecPn27e3nZeaFk7rXsn-TDAKBnhQVAnjBxVr3rKDR_UQLkbpXMBuDaEcyG1Enx0goytOSh-jd6cffeHYQfBw9xWmOw-x53LR5tctH935rixd2mxlOieScqaw8uLQ07fD1Cq3cXiYZrcDOlQLCeCcNNLxv8rbUEzpSilpEnpWepzKqUleb8SJfbE0W5t42hPHE-lxrHNvPjzlvuJ3-Ca4PVZAC3RJUK2xUdowYfGylcbUvyH_U-mz7Ad</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892661110</pqid></control><display><type>article</type><title>Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies</title><source>MEDLINE</source><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Yang, Lu ; Borne, Flora ; Betz, Anja ; Aardema, Matthew L. ; Zhen, Ying ; Peng, Julie ; Visconti, Regina ; Wu, Mariana ; Roland, Bartholomew P. ; Talsma, Aaron D. ; Palladino, Michael J. ; Petschenka, Georg ; Andolfatto, Peter</creator><creatorcontrib>Yang, Lu ; Borne, Flora ; Betz, Anja ; Aardema, Matthew L. ; Zhen, Ying ; Peng, Julie ; Visconti, Regina ; Wu, Mariana ; Roland, Bartholomew P. ; Talsma, Aaron D. ; Palladino, Michael J. ; Petschenka, Georg ; Andolfatto, Peter</creatorcontrib><description>Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies and gene editing in Drosophila, we find that the initial steps toward resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. By contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as a predator of toxic firefly prey.
[Display omitted]
•To obtain defensive lucibufagin toxins, Photuris fireflies predate other fireflies•Photuris have evolved ATPα1 paralogs with increasing levels of toxin resistance•Firefly genera that synthesize toxins internally retain a single resistant ATPα1•Drosophila engineering reveals major determinants of toxin resistance in fireflies
Animal species that obtain defensive toxins from their diet are likely to face distinct physiological challenges from species that synthesize toxins internally. Yang et al. reveal that fireflies that produce toxins internally and fireflies that have specialized to predate them have evolved toxin-resistant Na+,K+-ATPases via distinct mechanisms.</description><identifier>ISSN: 0960-9822</identifier><identifier>ISSN: 1879-0445</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2023.10.063</identifier><identifier>PMID: 37989309</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; Biological Evolution ; compensatory evolution ; compensatory substitutions ; Drosophila ; enzymes ; Fireflies ; gene duplication ; genes ; genus ; Photuris ; physiology ; predation ; Predatory Behavior ; species ; target-site insensitivity ; toxicity ; toxins</subject><ispartof>Current biology, 2023-12, Vol.33 (23), p.5160-5168.e7</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-887a53bbef5203d41a495f67671393b6b13af5aade389033458643fa40fb6bb63</citedby><cites>FETCH-LOGICAL-c485t-887a53bbef5203d41a495f67671393b6b13af5aade389033458643fa40fb6bb63</cites><orcidid>0000-0003-3393-4574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982223014641$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37989309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Borne, Flora</creatorcontrib><creatorcontrib>Betz, Anja</creatorcontrib><creatorcontrib>Aardema, Matthew L.</creatorcontrib><creatorcontrib>Zhen, Ying</creatorcontrib><creatorcontrib>Peng, Julie</creatorcontrib><creatorcontrib>Visconti, Regina</creatorcontrib><creatorcontrib>Wu, Mariana</creatorcontrib><creatorcontrib>Roland, Bartholomew P.</creatorcontrib><creatorcontrib>Talsma, Aaron D.</creatorcontrib><creatorcontrib>Palladino, Michael J.</creatorcontrib><creatorcontrib>Petschenka, Georg</creatorcontrib><creatorcontrib>Andolfatto, Peter</creatorcontrib><title>Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies and gene editing in Drosophila, we find that the initial steps toward resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. By contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as a predator of toxic firefly prey.
[Display omitted]
•To obtain defensive lucibufagin toxins, Photuris fireflies predate other fireflies•Photuris have evolved ATPα1 paralogs with increasing levels of toxin resistance•Firefly genera that synthesize toxins internally retain a single resistant ATPα1•Drosophila engineering reveals major determinants of toxin resistance in fireflies
Animal species that obtain defensive toxins from their diet are likely to face distinct physiological challenges from species that synthesize toxins internally. Yang et al. reveal that fireflies that produce toxins internally and fireflies that have specialized to predate them have evolved toxin-resistant Na+,K+-ATPases via distinct mechanisms.</description><subject>Animals</subject><subject>Biological Evolution</subject><subject>compensatory evolution</subject><subject>compensatory substitutions</subject><subject>Drosophila</subject><subject>enzymes</subject><subject>Fireflies</subject><subject>gene duplication</subject><subject>genes</subject><subject>genus</subject><subject>Photuris</subject><subject>physiology</subject><subject>predation</subject><subject>Predatory Behavior</subject><subject>species</subject><subject>target-site insensitivity</subject><subject>toxicity</subject><subject>toxins</subject><issn>0960-9822</issn><issn>1879-0445</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcuOEzEQRS0EYsLAB7BBXrLp4HfbYoHQiJc0Eixgbbnt6omjTjvYTov8PQ4JI9jAynLVrauqexB6TsmaEqpebdf-MKwZYbz910TxB2hFdW86IoR8iFbEKNIZzdgVelLKlhDKtFGP0RXvjTacmBUavmQIrqZ8xGPMME4RCnZzwHUDMeOafkR_6RzxPsMRb9wCGJY0LRBwiKXG2ddfwhlnKK3gZg-41Owq3DW7p-jR6KYCzy7vNfr2_t3Xm4_d7ecPn27e3nZeaFk7rXsn-TDAKBnhQVAnjBxVr3rKDR_UQLkbpXMBuDaEcyG1Enx0goytOSh-jd6cffeHYQfBw9xWmOw-x53LR5tctH935rixd2mxlOieScqaw8uLQ07fD1Cq3cXiYZrcDOlQLCeCcNNLxv8rbUEzpSilpEnpWepzKqUleb8SJfbE0W5t42hPHE-lxrHNvPjzlvuJ3-Ca4PVZAC3RJUK2xUdowYfGylcbUvyH_U-mz7Ad</recordid><startdate>20231204</startdate><enddate>20231204</enddate><creator>Yang, Lu</creator><creator>Borne, Flora</creator><creator>Betz, Anja</creator><creator>Aardema, Matthew L.</creator><creator>Zhen, Ying</creator><creator>Peng, Julie</creator><creator>Visconti, Regina</creator><creator>Wu, Mariana</creator><creator>Roland, Bartholomew P.</creator><creator>Talsma, Aaron D.</creator><creator>Palladino, Michael J.</creator><creator>Petschenka, Georg</creator><creator>Andolfatto, Peter</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3393-4574</orcidid></search><sort><creationdate>20231204</creationdate><title>Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies</title><author>Yang, Lu ; Borne, Flora ; Betz, Anja ; Aardema, Matthew L. ; Zhen, Ying ; Peng, Julie ; Visconti, Regina ; Wu, Mariana ; Roland, Bartholomew P. ; Talsma, Aaron D. ; Palladino, Michael J. ; Petschenka, Georg ; Andolfatto, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-887a53bbef5203d41a495f67671393b6b13af5aade389033458643fa40fb6bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biological Evolution</topic><topic>compensatory evolution</topic><topic>compensatory substitutions</topic><topic>Drosophila</topic><topic>enzymes</topic><topic>Fireflies</topic><topic>gene duplication</topic><topic>genes</topic><topic>genus</topic><topic>Photuris</topic><topic>physiology</topic><topic>predation</topic><topic>Predatory Behavior</topic><topic>species</topic><topic>target-site insensitivity</topic><topic>toxicity</topic><topic>toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Borne, Flora</creatorcontrib><creatorcontrib>Betz, Anja</creatorcontrib><creatorcontrib>Aardema, Matthew L.</creatorcontrib><creatorcontrib>Zhen, Ying</creatorcontrib><creatorcontrib>Peng, Julie</creatorcontrib><creatorcontrib>Visconti, Regina</creatorcontrib><creatorcontrib>Wu, Mariana</creatorcontrib><creatorcontrib>Roland, Bartholomew P.</creatorcontrib><creatorcontrib>Talsma, Aaron D.</creatorcontrib><creatorcontrib>Palladino, Michael J.</creatorcontrib><creatorcontrib>Petschenka, Georg</creatorcontrib><creatorcontrib>Andolfatto, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lu</au><au>Borne, Flora</au><au>Betz, Anja</au><au>Aardema, Matthew L.</au><au>Zhen, Ying</au><au>Peng, Julie</au><au>Visconti, Regina</au><au>Wu, Mariana</au><au>Roland, Bartholomew P.</au><au>Talsma, Aaron D.</au><au>Palladino, Michael J.</au><au>Petschenka, Georg</au><au>Andolfatto, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2023-12-04</date><risdate>2023</risdate><volume>33</volume><issue>23</issue><spage>5160</spage><epage>5168.e7</epage><pages>5160-5168.e7</pages><issn>0960-9822</issn><issn>1879-0445</issn><eissn>1879-0445</eissn><abstract>Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies and gene editing in Drosophila, we find that the initial steps toward resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. By contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as a predator of toxic firefly prey.
[Display omitted]
•To obtain defensive lucibufagin toxins, Photuris fireflies predate other fireflies•Photuris have evolved ATPα1 paralogs with increasing levels of toxin resistance•Firefly genera that synthesize toxins internally retain a single resistant ATPα1•Drosophila engineering reveals major determinants of toxin resistance in fireflies
Animal species that obtain defensive toxins from their diet are likely to face distinct physiological challenges from species that synthesize toxins internally. Yang et al. reveal that fireflies that produce toxins internally and fireflies that have specialized to predate them have evolved toxin-resistant Na+,K+-ATPases via distinct mechanisms.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>37989309</pmid><doi>10.1016/j.cub.2023.10.063</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3393-4574</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2023-12, Vol.33 (23), p.5160-5168.e7 |
issn | 0960-9822 1879-0445 1879-0445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10872512 |
source | MEDLINE; Cell Press Archives; Elsevier ScienceDirect Journals; EZB Electronic Journals Library |
subjects | Animals Biological Evolution compensatory evolution compensatory substitutions Drosophila enzymes Fireflies gene duplication genes genus Photuris physiology predation Predatory Behavior species target-site insensitivity toxicity toxins |
title | Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predatory%20fireflies%20and%20their%20toxic%20firefly%20prey%20have%20evolved%20distinct%20toxin%20resistance%20strategies&rft.jtitle=Current%20biology&rft.au=Yang,%20Lu&rft.date=2023-12-04&rft.volume=33&rft.issue=23&rft.spage=5160&rft.epage=5168.e7&rft.pages=5160-5168.e7&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2023.10.063&rft_dat=%3Cproquest_pubme%3E3040397523%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892661110&rft_id=info:pmid/37989309&rft_els_id=S0960982223014641&rfr_iscdi=true |