Functionalization of Ti64 via Direct Laser Interference Patterning and Its Influence on Wettability and Oxygen Bubble Nucleation
The nucleation of bubbles on solid surfaces is an important phenomenon in nature and technological processes like electrolysis. During proton-exchange membrane electrolysis, the nucleation and separation of the electrically nonconductive oxygen in the anodic cycle plays a crucial role to minimize th...
Gespeichert in:
Veröffentlicht in: | Langmuir 2024-02, Vol.40 (6), p.2918-2929 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2929 |
---|---|
container_issue | 6 |
container_start_page | 2918 |
container_title | Langmuir |
container_volume | 40 |
creator | Heinrich, Julian Ränke, Fabian Schwarzenberger, Karin Yang, Xuegeng Baumann, Robert Marzec, Mateusz Lasagni, Andrés Fabián Eckert, Kerstin |
description | The nucleation of bubbles on solid surfaces is an important phenomenon in nature and technological processes like electrolysis. During proton-exchange membrane electrolysis, the nucleation and separation of the electrically nonconductive oxygen in the anodic cycle plays a crucial role to minimize the overpotential it causes in the system. This increases the efficiency of the process, making renewable energy sources and the “power-to-gas” strategy more viable. A promising approach is to optimize gas separation by surface functionalization in order to apply a more advantageous interface to industrial materials. In this work, the connection between the wettability and bubble nucleation of oxygen is investigated. For tailoring the wettability of Ti64 substrates, the direct laser interference patterning method is applied. A laser source with a wavelength of 1064 nm and a pulse duration of 12 ps is used to generate periodic pillar-like structures with different depths up to ∼5 μm. The resulting surface properties are characterized by water contact angle measurement, scanning electron microscopy, confocal microscopy, and X-ray photon spectroscopy. It was possible to generate structures with a water contact angle ranging from 20° up to nearly superhydrophobic conditions. The different wettabilities are validated based on X-ray photon spectroscopy and the different elemental composition of the samples. The results indicate that the surface character of the substrate adapts depending on the surrounding media and needs more time to reach a steady state for deeper structures. A custom setup is used to expose the functionalized surfaces to oxygen-oversaturated solutions. It is shown that a higher hydrophobicity of the structured surface yields a stronger interaction with the dissolved gas. This significantly enhances the oxygen nucleation up to nearly 350% by generating approximately 20 times more nucleation spots, but also smaller bubble sizes and a reduced detachment rate. |
doi_str_mv | 10.1021/acs.langmuir.3c02863 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10867896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921114873</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-1a670e07e93a45aa5773aef767e0bced05f88ec3ac382f6107e73cfc7f9018ea3</originalsourceid><addsrcrecordid>eNp9kU1vFCEYx4nR2LX6DYzh6GVWGGYG5mS0te0mG-uhxiN5hn1YaVimAtO4nvzosi9t9OKJl__LA_kR8pqzOWc1fwcmzT2E9WZycS4Mq1UnnpAZb2tWtaqWT8mMyUZUsunECXmR0i1jrBdN_5ycCFX3rWjaGfl9MQWT3RjAu1-w29DR0hvXNfTeAT13EU2mS0gY6SJkjBYjBoP0C-RyCi6sKYQVXeRUdOunvVhavmHOMDjv8nZvuP65XWOgH6dh8Eg_T8bjftxL8syCT_jquJ6Srxefbs6uquX15eLsw7KCpmW54tBJhkxiL8oFQCulALSyk8gGgyvWWqXQCDDlb7bjxSmFsUbannGFIE7J-0Pv3TRscGUw5Ahe30W3gbjVIzj9rxLcd70e7zVnqpOq70rD22NDHH9MmLLeuGTQFwg4TknXfc05b5QUxdocrCaOKUW0j3M40zt6utDTD_T0kV6Jvfn7jY-hB1zFwA6GXfx2nGLBlv7f-QeulK2N</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921114873</pqid></control><display><type>article</type><title>Functionalization of Ti64 via Direct Laser Interference Patterning and Its Influence on Wettability and Oxygen Bubble Nucleation</title><source>American Chemical Society Journals</source><creator>Heinrich, Julian ; Ränke, Fabian ; Schwarzenberger, Karin ; Yang, Xuegeng ; Baumann, Robert ; Marzec, Mateusz ; Lasagni, Andrés Fabián ; Eckert, Kerstin</creator><creatorcontrib>Heinrich, Julian ; Ränke, Fabian ; Schwarzenberger, Karin ; Yang, Xuegeng ; Baumann, Robert ; Marzec, Mateusz ; Lasagni, Andrés Fabián ; Eckert, Kerstin</creatorcontrib><description>The nucleation of bubbles on solid surfaces is an important phenomenon in nature and technological processes like electrolysis. During proton-exchange membrane electrolysis, the nucleation and separation of the electrically nonconductive oxygen in the anodic cycle plays a crucial role to minimize the overpotential it causes in the system. This increases the efficiency of the process, making renewable energy sources and the “power-to-gas” strategy more viable. A promising approach is to optimize gas separation by surface functionalization in order to apply a more advantageous interface to industrial materials. In this work, the connection between the wettability and bubble nucleation of oxygen is investigated. For tailoring the wettability of Ti64 substrates, the direct laser interference patterning method is applied. A laser source with a wavelength of 1064 nm and a pulse duration of 12 ps is used to generate periodic pillar-like structures with different depths up to ∼5 μm. The resulting surface properties are characterized by water contact angle measurement, scanning electron microscopy, confocal microscopy, and X-ray photon spectroscopy. It was possible to generate structures with a water contact angle ranging from 20° up to nearly superhydrophobic conditions. The different wettabilities are validated based on X-ray photon spectroscopy and the different elemental composition of the samples. The results indicate that the surface character of the substrate adapts depending on the surrounding media and needs more time to reach a steady state for deeper structures. A custom setup is used to expose the functionalized surfaces to oxygen-oversaturated solutions. It is shown that a higher hydrophobicity of the structured surface yields a stronger interaction with the dissolved gas. This significantly enhances the oxygen nucleation up to nearly 350% by generating approximately 20 times more nucleation spots, but also smaller bubble sizes and a reduced detachment rate.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.3c02863</identifier><identifier>PMID: 38295345</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2024-02, Vol.40 (6), p.2918-2929</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-1a670e07e93a45aa5773aef767e0bced05f88ec3ac382f6107e73cfc7f9018ea3</citedby><cites>FETCH-LOGICAL-a450t-1a670e07e93a45aa5773aef767e0bced05f88ec3ac382f6107e73cfc7f9018ea3</cites><orcidid>0009-0003-3601-9248 ; 0000-0002-4617-0713 ; 0000-0002-9671-8628 ; 0000-0002-4866-483X ; 0000-0001-9834-3930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.3c02863$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.3c02863$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38295345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinrich, Julian</creatorcontrib><creatorcontrib>Ränke, Fabian</creatorcontrib><creatorcontrib>Schwarzenberger, Karin</creatorcontrib><creatorcontrib>Yang, Xuegeng</creatorcontrib><creatorcontrib>Baumann, Robert</creatorcontrib><creatorcontrib>Marzec, Mateusz</creatorcontrib><creatorcontrib>Lasagni, Andrés Fabián</creatorcontrib><creatorcontrib>Eckert, Kerstin</creatorcontrib><title>Functionalization of Ti64 via Direct Laser Interference Patterning and Its Influence on Wettability and Oxygen Bubble Nucleation</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The nucleation of bubbles on solid surfaces is an important phenomenon in nature and technological processes like electrolysis. During proton-exchange membrane electrolysis, the nucleation and separation of the electrically nonconductive oxygen in the anodic cycle plays a crucial role to minimize the overpotential it causes in the system. This increases the efficiency of the process, making renewable energy sources and the “power-to-gas” strategy more viable. A promising approach is to optimize gas separation by surface functionalization in order to apply a more advantageous interface to industrial materials. In this work, the connection between the wettability and bubble nucleation of oxygen is investigated. For tailoring the wettability of Ti64 substrates, the direct laser interference patterning method is applied. A laser source with a wavelength of 1064 nm and a pulse duration of 12 ps is used to generate periodic pillar-like structures with different depths up to ∼5 μm. The resulting surface properties are characterized by water contact angle measurement, scanning electron microscopy, confocal microscopy, and X-ray photon spectroscopy. It was possible to generate structures with a water contact angle ranging from 20° up to nearly superhydrophobic conditions. The different wettabilities are validated based on X-ray photon spectroscopy and the different elemental composition of the samples. The results indicate that the surface character of the substrate adapts depending on the surrounding media and needs more time to reach a steady state for deeper structures. A custom setup is used to expose the functionalized surfaces to oxygen-oversaturated solutions. It is shown that a higher hydrophobicity of the structured surface yields a stronger interaction with the dissolved gas. This significantly enhances the oxygen nucleation up to nearly 350% by generating approximately 20 times more nucleation spots, but also smaller bubble sizes and a reduced detachment rate.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vFCEYx4nR2LX6DYzh6GVWGGYG5mS0te0mG-uhxiN5hn1YaVimAtO4nvzosi9t9OKJl__LA_kR8pqzOWc1fwcmzT2E9WZycS4Mq1UnnpAZb2tWtaqWT8mMyUZUsunECXmR0i1jrBdN_5ycCFX3rWjaGfl9MQWT3RjAu1-w29DR0hvXNfTeAT13EU2mS0gY6SJkjBYjBoP0C-RyCi6sKYQVXeRUdOunvVhavmHOMDjv8nZvuP65XWOgH6dh8Eg_T8bjftxL8syCT_jquJ6Srxefbs6uquX15eLsw7KCpmW54tBJhkxiL8oFQCulALSyk8gGgyvWWqXQCDDlb7bjxSmFsUbannGFIE7J-0Pv3TRscGUw5Ahe30W3gbjVIzj9rxLcd70e7zVnqpOq70rD22NDHH9MmLLeuGTQFwg4TknXfc05b5QUxdocrCaOKUW0j3M40zt6utDTD_T0kV6Jvfn7jY-hB1zFwA6GXfx2nGLBlv7f-QeulK2N</recordid><startdate>20240213</startdate><enddate>20240213</enddate><creator>Heinrich, Julian</creator><creator>Ränke, Fabian</creator><creator>Schwarzenberger, Karin</creator><creator>Yang, Xuegeng</creator><creator>Baumann, Robert</creator><creator>Marzec, Mateusz</creator><creator>Lasagni, Andrés Fabián</creator><creator>Eckert, Kerstin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0003-3601-9248</orcidid><orcidid>https://orcid.org/0000-0002-4617-0713</orcidid><orcidid>https://orcid.org/0000-0002-9671-8628</orcidid><orcidid>https://orcid.org/0000-0002-4866-483X</orcidid><orcidid>https://orcid.org/0000-0001-9834-3930</orcidid></search><sort><creationdate>20240213</creationdate><title>Functionalization of Ti64 via Direct Laser Interference Patterning and Its Influence on Wettability and Oxygen Bubble Nucleation</title><author>Heinrich, Julian ; Ränke, Fabian ; Schwarzenberger, Karin ; Yang, Xuegeng ; Baumann, Robert ; Marzec, Mateusz ; Lasagni, Andrés Fabián ; Eckert, Kerstin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-1a670e07e93a45aa5773aef767e0bced05f88ec3ac382f6107e73cfc7f9018ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinrich, Julian</creatorcontrib><creatorcontrib>Ränke, Fabian</creatorcontrib><creatorcontrib>Schwarzenberger, Karin</creatorcontrib><creatorcontrib>Yang, Xuegeng</creatorcontrib><creatorcontrib>Baumann, Robert</creatorcontrib><creatorcontrib>Marzec, Mateusz</creatorcontrib><creatorcontrib>Lasagni, Andrés Fabián</creatorcontrib><creatorcontrib>Eckert, Kerstin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinrich, Julian</au><au>Ränke, Fabian</au><au>Schwarzenberger, Karin</au><au>Yang, Xuegeng</au><au>Baumann, Robert</au><au>Marzec, Mateusz</au><au>Lasagni, Andrés Fabián</au><au>Eckert, Kerstin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionalization of Ti64 via Direct Laser Interference Patterning and Its Influence on Wettability and Oxygen Bubble Nucleation</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-02-13</date><risdate>2024</risdate><volume>40</volume><issue>6</issue><spage>2918</spage><epage>2929</epage><pages>2918-2929</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>The nucleation of bubbles on solid surfaces is an important phenomenon in nature and technological processes like electrolysis. During proton-exchange membrane electrolysis, the nucleation and separation of the electrically nonconductive oxygen in the anodic cycle plays a crucial role to minimize the overpotential it causes in the system. This increases the efficiency of the process, making renewable energy sources and the “power-to-gas” strategy more viable. A promising approach is to optimize gas separation by surface functionalization in order to apply a more advantageous interface to industrial materials. In this work, the connection between the wettability and bubble nucleation of oxygen is investigated. For tailoring the wettability of Ti64 substrates, the direct laser interference patterning method is applied. A laser source with a wavelength of 1064 nm and a pulse duration of 12 ps is used to generate periodic pillar-like structures with different depths up to ∼5 μm. The resulting surface properties are characterized by water contact angle measurement, scanning electron microscopy, confocal microscopy, and X-ray photon spectroscopy. It was possible to generate structures with a water contact angle ranging from 20° up to nearly superhydrophobic conditions. The different wettabilities are validated based on X-ray photon spectroscopy and the different elemental composition of the samples. The results indicate that the surface character of the substrate adapts depending on the surrounding media and needs more time to reach a steady state for deeper structures. A custom setup is used to expose the functionalized surfaces to oxygen-oversaturated solutions. It is shown that a higher hydrophobicity of the structured surface yields a stronger interaction with the dissolved gas. This significantly enhances the oxygen nucleation up to nearly 350% by generating approximately 20 times more nucleation spots, but also smaller bubble sizes and a reduced detachment rate.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38295345</pmid><doi>10.1021/acs.langmuir.3c02863</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0003-3601-9248</orcidid><orcidid>https://orcid.org/0000-0002-4617-0713</orcidid><orcidid>https://orcid.org/0000-0002-9671-8628</orcidid><orcidid>https://orcid.org/0000-0002-4866-483X</orcidid><orcidid>https://orcid.org/0000-0001-9834-3930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2024-02, Vol.40 (6), p.2918-2929 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10867896 |
source | American Chemical Society Journals |
title | Functionalization of Ti64 via Direct Laser Interference Patterning and Its Influence on Wettability and Oxygen Bubble Nucleation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionalization%20of%20Ti64%20via%20Direct%20Laser%20Interference%20Patterning%20and%20Its%20Influence%20on%20Wettability%20and%20Oxygen%20Bubble%20Nucleation&rft.jtitle=Langmuir&rft.au=Heinrich,%20Julian&rft.date=2024-02-13&rft.volume=40&rft.issue=6&rft.spage=2918&rft.epage=2929&rft.pages=2918-2929&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.3c02863&rft_dat=%3Cproquest_pubme%3E2921114873%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921114873&rft_id=info:pmid/38295345&rfr_iscdi=true |