Using Generative Modeling to Endow with Potency Initially Inert Compounds with Good Bioavailability and Low Toxicity
In the early stages of drug development, large chemical libraries are typically screened to identify compounds of promising potency against the chosen targets. Often, however, the resulting hit compounds tend to have poor drug metabolism and pharmacokinetics (DMPK), with negative developability feat...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2024-02, Vol.64 (3), p.590-596 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 596 |
---|---|
container_issue | 3 |
container_start_page | 590 |
container_title | Journal of chemical information and modeling |
container_volume | 64 |
creator | Horne, Robert I. Wilson-Godber, Jared González Díaz, Alicia Brotzakis, Z. Faidon Seal, Srijit Gregory, Rebecca C. Possenti, Andrea Chia, Sean Vendruscolo, Michele |
description | In the early stages of drug development, large chemical libraries are typically screened to identify compounds of promising potency against the chosen targets. Often, however, the resulting hit compounds tend to have poor drug metabolism and pharmacokinetics (DMPK), with negative developability features that may be difficult to eliminate. Therefore, starting the drug discovery process with a “null library”, compounds that have highly desirable DMPK properties but no potency against the chosen targets, could be advantageous. Here, we explore the opportunities offered by machine learning to realize this strategy in the case of the inhibition of α-synuclein aggregation, a process associated with Parkinson’s disease. We apply MolDQN, a generative machine learning method, to build an inhibitory activity against α-synuclein aggregation into an initial inactive compound with good DMPK properties. Our results illustrate how generative modeling can be used to endow initially inert compounds with desirable developability properties. |
doi_str_mv | 10.1021/acs.jcim.3c01777 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10865343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926187646</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-9c2a644c9eef6049c0c7ee246ce552e63ec4f84143c4d3203da6498262acceee3</originalsourceid><addsrcrecordid>eNp1kc1vEzEQxS1ERUvgzglZ4tIDCf5a7_qEICqhUhAcWomb5XonrSOvHdbetPnv8ZKkokicPBr_5tlvHkJvKJlRwugHY9NsbV0345bQuq6foTNaCTVVkvx8fqwrJU_Ry5TWhHCuJHuBTnnDJK0lP0P5OrlwixcQoDfZbQF_iy34sZcjvghtvMf3Lt_hHzFDsDt8GVx2xvuxgj7jeew2cQht2mOLGFv82UWzNc6bG-dd3mETWrwsQlfxwdnSeIVOVsYneH04J-j6y8XV_Ot0-X1xOf-0nBohWZ4qy4wUwiqAlSRCWWJrACakhapiIDlYsWoEFdyKljPC24KrYo0ZawGAT9DHve5muOmgtRByb7ze9K4z_U5H4_TTm-Du9G3cakoaWXHBi8L5QaGPvwZIWXcuWfDeBIhD0kzRhqpm3OUEvfsHXcehD8Vfocq6m1qKkSJ7yvYxpR5Wj7-hRI-Z6pKpHjPVh0zLyNu_XTwOHEMswPs98Gf0-Oh_9X4D002wHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926187646</pqid></control><display><type>article</type><title>Using Generative Modeling to Endow with Potency Initially Inert Compounds with Good Bioavailability and Low Toxicity</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Horne, Robert I. ; Wilson-Godber, Jared ; González Díaz, Alicia ; Brotzakis, Z. Faidon ; Seal, Srijit ; Gregory, Rebecca C. ; Possenti, Andrea ; Chia, Sean ; Vendruscolo, Michele</creator><creatorcontrib>Horne, Robert I. ; Wilson-Godber, Jared ; González Díaz, Alicia ; Brotzakis, Z. Faidon ; Seal, Srijit ; Gregory, Rebecca C. ; Possenti, Andrea ; Chia, Sean ; Vendruscolo, Michele</creatorcontrib><description>In the early stages of drug development, large chemical libraries are typically screened to identify compounds of promising potency against the chosen targets. Often, however, the resulting hit compounds tend to have poor drug metabolism and pharmacokinetics (DMPK), with negative developability features that may be difficult to eliminate. Therefore, starting the drug discovery process with a “null library”, compounds that have highly desirable DMPK properties but no potency against the chosen targets, could be advantageous. Here, we explore the opportunities offered by machine learning to realize this strategy in the case of the inhibition of α-synuclein aggregation, a process associated with Parkinson’s disease. We apply MolDQN, a generative machine learning method, to build an inhibitory activity against α-synuclein aggregation into an initial inactive compound with good DMPK properties. Our results illustrate how generative modeling can be used to endow initially inert compounds with desirable developability properties.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c01777</identifier><identifier>PMID: 38261763</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>alpha-Synuclein - chemistry ; Application Note ; Bioavailability ; Biological Availability ; Drug Discovery ; Machine learning ; Modelling ; Parkinson's disease ; Small Molecule Libraries - pharmacology</subject><ispartof>Journal of chemical information and modeling, 2024-02, Vol.64 (3), p.590-596</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Feb 12, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-9c2a644c9eef6049c0c7ee246ce552e63ec4f84143c4d3203da6498262acceee3</citedby><cites>FETCH-LOGICAL-a462t-9c2a644c9eef6049c0c7ee246ce552e63ec4f84143c4d3203da6498262acceee3</cites><orcidid>0000-0003-2790-8679 ; 0000-0003-1534-2639 ; 0000-0002-3616-1610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.3c01777$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.3c01777$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38261763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horne, Robert I.</creatorcontrib><creatorcontrib>Wilson-Godber, Jared</creatorcontrib><creatorcontrib>González Díaz, Alicia</creatorcontrib><creatorcontrib>Brotzakis, Z. Faidon</creatorcontrib><creatorcontrib>Seal, Srijit</creatorcontrib><creatorcontrib>Gregory, Rebecca C.</creatorcontrib><creatorcontrib>Possenti, Andrea</creatorcontrib><creatorcontrib>Chia, Sean</creatorcontrib><creatorcontrib>Vendruscolo, Michele</creatorcontrib><title>Using Generative Modeling to Endow with Potency Initially Inert Compounds with Good Bioavailability and Low Toxicity</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>In the early stages of drug development, large chemical libraries are typically screened to identify compounds of promising potency against the chosen targets. Often, however, the resulting hit compounds tend to have poor drug metabolism and pharmacokinetics (DMPK), with negative developability features that may be difficult to eliminate. Therefore, starting the drug discovery process with a “null library”, compounds that have highly desirable DMPK properties but no potency against the chosen targets, could be advantageous. Here, we explore the opportunities offered by machine learning to realize this strategy in the case of the inhibition of α-synuclein aggregation, a process associated with Parkinson’s disease. We apply MolDQN, a generative machine learning method, to build an inhibitory activity against α-synuclein aggregation into an initial inactive compound with good DMPK properties. Our results illustrate how generative modeling can be used to endow initially inert compounds with desirable developability properties.</description><subject>alpha-Synuclein - chemistry</subject><subject>Application Note</subject><subject>Bioavailability</subject><subject>Biological Availability</subject><subject>Drug Discovery</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Parkinson's disease</subject><subject>Small Molecule Libraries - pharmacology</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1vEzEQxS1ERUvgzglZ4tIDCf5a7_qEICqhUhAcWomb5XonrSOvHdbetPnv8ZKkokicPBr_5tlvHkJvKJlRwugHY9NsbV0345bQuq6foTNaCTVVkvx8fqwrJU_Ry5TWhHCuJHuBTnnDJK0lP0P5OrlwixcQoDfZbQF_iy34sZcjvghtvMf3Lt_hHzFDsDt8GVx2xvuxgj7jeew2cQht2mOLGFv82UWzNc6bG-dd3mETWrwsQlfxwdnSeIVOVsYneH04J-j6y8XV_Ot0-X1xOf-0nBohWZ4qy4wUwiqAlSRCWWJrACakhapiIDlYsWoEFdyKljPC24KrYo0ZawGAT9DHve5muOmgtRByb7ze9K4z_U5H4_TTm-Du9G3cakoaWXHBi8L5QaGPvwZIWXcuWfDeBIhD0kzRhqpm3OUEvfsHXcehD8Vfocq6m1qKkSJ7yvYxpR5Wj7-hRI-Z6pKpHjPVh0zLyNu_XTwOHEMswPs98Gf0-Oh_9X4D002wHQ</recordid><startdate>20240212</startdate><enddate>20240212</enddate><creator>Horne, Robert I.</creator><creator>Wilson-Godber, Jared</creator><creator>González Díaz, Alicia</creator><creator>Brotzakis, Z. Faidon</creator><creator>Seal, Srijit</creator><creator>Gregory, Rebecca C.</creator><creator>Possenti, Andrea</creator><creator>Chia, Sean</creator><creator>Vendruscolo, Michele</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2790-8679</orcidid><orcidid>https://orcid.org/0000-0003-1534-2639</orcidid><orcidid>https://orcid.org/0000-0002-3616-1610</orcidid></search><sort><creationdate>20240212</creationdate><title>Using Generative Modeling to Endow with Potency Initially Inert Compounds with Good Bioavailability and Low Toxicity</title><author>Horne, Robert I. ; Wilson-Godber, Jared ; González Díaz, Alicia ; Brotzakis, Z. Faidon ; Seal, Srijit ; Gregory, Rebecca C. ; Possenti, Andrea ; Chia, Sean ; Vendruscolo, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-9c2a644c9eef6049c0c7ee246ce552e63ec4f84143c4d3203da6498262acceee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alpha-Synuclein - chemistry</topic><topic>Application Note</topic><topic>Bioavailability</topic><topic>Biological Availability</topic><topic>Drug Discovery</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Parkinson's disease</topic><topic>Small Molecule Libraries - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horne, Robert I.</creatorcontrib><creatorcontrib>Wilson-Godber, Jared</creatorcontrib><creatorcontrib>González Díaz, Alicia</creatorcontrib><creatorcontrib>Brotzakis, Z. Faidon</creatorcontrib><creatorcontrib>Seal, Srijit</creatorcontrib><creatorcontrib>Gregory, Rebecca C.</creatorcontrib><creatorcontrib>Possenti, Andrea</creatorcontrib><creatorcontrib>Chia, Sean</creatorcontrib><creatorcontrib>Vendruscolo, Michele</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horne, Robert I.</au><au>Wilson-Godber, Jared</au><au>González Díaz, Alicia</au><au>Brotzakis, Z. Faidon</au><au>Seal, Srijit</au><au>Gregory, Rebecca C.</au><au>Possenti, Andrea</au><au>Chia, Sean</au><au>Vendruscolo, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Generative Modeling to Endow with Potency Initially Inert Compounds with Good Bioavailability and Low Toxicity</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-02-12</date><risdate>2024</risdate><volume>64</volume><issue>3</issue><spage>590</spage><epage>596</epage><pages>590-596</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>In the early stages of drug development, large chemical libraries are typically screened to identify compounds of promising potency against the chosen targets. Often, however, the resulting hit compounds tend to have poor drug metabolism and pharmacokinetics (DMPK), with negative developability features that may be difficult to eliminate. Therefore, starting the drug discovery process with a “null library”, compounds that have highly desirable DMPK properties but no potency against the chosen targets, could be advantageous. Here, we explore the opportunities offered by machine learning to realize this strategy in the case of the inhibition of α-synuclein aggregation, a process associated with Parkinson’s disease. We apply MolDQN, a generative machine learning method, to build an inhibitory activity against α-synuclein aggregation into an initial inactive compound with good DMPK properties. Our results illustrate how generative modeling can be used to endow initially inert compounds with desirable developability properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38261763</pmid><doi>10.1021/acs.jcim.3c01777</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2790-8679</orcidid><orcidid>https://orcid.org/0000-0003-1534-2639</orcidid><orcidid>https://orcid.org/0000-0002-3616-1610</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2024-02, Vol.64 (3), p.590-596 |
issn | 1549-9596 1549-960X 1549-960X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10865343 |
source | MEDLINE; American Chemical Society Journals |
subjects | alpha-Synuclein - chemistry Application Note Bioavailability Biological Availability Drug Discovery Machine learning Modelling Parkinson's disease Small Molecule Libraries - pharmacology |
title | Using Generative Modeling to Endow with Potency Initially Inert Compounds with Good Bioavailability and Low Toxicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Generative%20Modeling%20to%20Endow%20with%20Potency%20Initially%20Inert%20Compounds%20with%20Good%20Bioavailability%20and%20Low%20Toxicity&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Horne,%20Robert%20I.&rft.date=2024-02-12&rft.volume=64&rft.issue=3&rft.spage=590&rft.epage=596&rft.pages=590-596&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c01777&rft_dat=%3Cproquest_pubme%3E2926187646%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926187646&rft_id=info:pmid/38261763&rfr_iscdi=true |