Trifunctional Saxitoxin Conjugates for Covalent Labeling of Voltage-Gated Sodium Channels

Voltage-gated sodium ion channels (Na s) are integral membrane protein complexes responsible for electrical signal conduction in excitable cells. Methods that enable selective labeling of Na s hold potential value for understanding how channel regulation and post-translational modification are influ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2023-11, Vol.24 (22), p.e202300493-e202300493
Hauptverfasser: Finkelstein, Darren S, Du Bois, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e202300493
container_issue 22
container_start_page e202300493
container_title Chembiochem : a European journal of chemical biology
container_volume 24
creator Finkelstein, Darren S
Du Bois, J
description Voltage-gated sodium ion channels (Na s) are integral membrane protein complexes responsible for electrical signal conduction in excitable cells. Methods that enable selective labeling of Na s hold potential value for understanding how channel regulation and post-translational modification are influenced during development and in response to diseases and disorders of the nervous system. We have developed chemical reagents patterned after (+)-saxitoxin (STX) - a potent and reversible inhibitor of multiple Na isoforms - and affixed with a reactive electrophile and either a biotin cofactor, fluorophore, or 'click' functional group for labeling wild-type channels. Our studies reveal enigmatic structural effects of the probes on the potency and efficiency of covalent protein modification. Among the compounds analyzed, a STX-maleimide-coumarin derivative is most effective at irreversibly blocking Na conductance when applied to recombinant Na s and endogenous channels expressed in hippocampal neurons. Mechanistic analysis supports the conclusion that high-affinity toxin binding is a prerequisite for covalent protein modification. Results from these studies are guiding the development of next-generation tool compounds for selective modification of Na s expressed in the plasma membranes of cells.
doi_str_mv 10.1002/cbic.202300493
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10863845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890633762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-cf4ff1140295187a6f026a3ee9a2941a3dcf0ac04335b1dcd90aab8e5c6542253</originalsourceid><addsrcrecordid>eNpdkU1vFDEMhiMEoqVw5YhG4sJlFudjMpMTQqtSkFbi0ILEKfJkkm1W2aQkM1X592TVZQWcbMuPX9l-CXlNYUUB2HszerNiwDiAUPwJOaeCq7aXnD895oKx_oy8KGUHAEpy-pyc8b4XclDDOflxk71bopl9ihiaa3zwc3rwsVmnuFu2ONvSuJRreY_BxrnZ4GiDj9smueZ7CjNubXtVsam5TpNf9s36FmO0obwkzxyGYl8d4wX59unyZv253Xy9-rL-uGkN78XcGieco1QAUx0depQOmERurUKmBEU-GQdoQHDejXQykwLEcbCdkV09reMX5MOj7t0y7u1k6pIZg77Lfo_5l07o9b-d6G_1Nt1rCoPkgzgovDsq5PRzsWXWe1-MDQGjTUvRbJCD7FklK_r2P3SXllw_d6AU1Lf3klVq9UiZnErJ1p22oaAPtumDbfpkWx148_cNJ_yPT_w35CyUgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890633762</pqid></control><display><type>article</type><title>Trifunctional Saxitoxin Conjugates for Covalent Labeling of Voltage-Gated Sodium Channels</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Finkelstein, Darren S ; Du Bois, J</creator><creatorcontrib>Finkelstein, Darren S ; Du Bois, J</creatorcontrib><description>Voltage-gated sodium ion channels (Na s) are integral membrane protein complexes responsible for electrical signal conduction in excitable cells. Methods that enable selective labeling of Na s hold potential value for understanding how channel regulation and post-translational modification are influenced during development and in response to diseases and disorders of the nervous system. We have developed chemical reagents patterned after (+)-saxitoxin (STX) - a potent and reversible inhibitor of multiple Na isoforms - and affixed with a reactive electrophile and either a biotin cofactor, fluorophore, or 'click' functional group for labeling wild-type channels. Our studies reveal enigmatic structural effects of the probes on the potency and efficiency of covalent protein modification. Among the compounds analyzed, a STX-maleimide-coumarin derivative is most effective at irreversibly blocking Na conductance when applied to recombinant Na s and endogenous channels expressed in hippocampal neurons. Mechanistic analysis supports the conclusion that high-affinity toxin binding is a prerequisite for covalent protein modification. Results from these studies are guiding the development of next-generation tool compounds for selective modification of Na s expressed in the plasma membranes of cells.</description><identifier>ISSN: 1439-4227</identifier><identifier>ISSN: 1439-7633</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.202300493</identifier><identifier>PMID: 37746898</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biotin ; Coumarin ; Covalence ; Electric potential ; Functional groups ; Hippocampus ; Integral membrane proteins ; Ion channels ; Isoforms ; Labeling ; Membranes ; Nervous system ; Neurons - metabolism ; Plasma membranes ; Protein Isoforms - metabolism ; Proteins ; Reagents ; Saxitoxin ; Sodium ; Sodium channels ; Sodium channels (voltage-gated) ; Sodium conductance ; Toxins ; Voltage ; Voltage-Gated Sodium Channels - metabolism</subject><ispartof>Chembiochem : a European journal of chemical biology, 2023-11, Vol.24 (22), p.e202300493-e202300493</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c374t-cf4ff1140295187a6f026a3ee9a2941a3dcf0ac04335b1dcd90aab8e5c6542253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37746898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Finkelstein, Darren S</creatorcontrib><creatorcontrib>Du Bois, J</creatorcontrib><title>Trifunctional Saxitoxin Conjugates for Covalent Labeling of Voltage-Gated Sodium Channels</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Voltage-gated sodium ion channels (Na s) are integral membrane protein complexes responsible for electrical signal conduction in excitable cells. Methods that enable selective labeling of Na s hold potential value for understanding how channel regulation and post-translational modification are influenced during development and in response to diseases and disorders of the nervous system. We have developed chemical reagents patterned after (+)-saxitoxin (STX) - a potent and reversible inhibitor of multiple Na isoforms - and affixed with a reactive electrophile and either a biotin cofactor, fluorophore, or 'click' functional group for labeling wild-type channels. Our studies reveal enigmatic structural effects of the probes on the potency and efficiency of covalent protein modification. Among the compounds analyzed, a STX-maleimide-coumarin derivative is most effective at irreversibly blocking Na conductance when applied to recombinant Na s and endogenous channels expressed in hippocampal neurons. Mechanistic analysis supports the conclusion that high-affinity toxin binding is a prerequisite for covalent protein modification. Results from these studies are guiding the development of next-generation tool compounds for selective modification of Na s expressed in the plasma membranes of cells.</description><subject>Biotin</subject><subject>Coumarin</subject><subject>Covalence</subject><subject>Electric potential</subject><subject>Functional groups</subject><subject>Hippocampus</subject><subject>Integral membrane proteins</subject><subject>Ion channels</subject><subject>Isoforms</subject><subject>Labeling</subject><subject>Membranes</subject><subject>Nervous system</subject><subject>Neurons - metabolism</subject><subject>Plasma membranes</subject><subject>Protein Isoforms - metabolism</subject><subject>Proteins</subject><subject>Reagents</subject><subject>Saxitoxin</subject><subject>Sodium</subject><subject>Sodium channels</subject><subject>Sodium channels (voltage-gated)</subject><subject>Sodium conductance</subject><subject>Toxins</subject><subject>Voltage</subject><subject>Voltage-Gated Sodium Channels - metabolism</subject><issn>1439-4227</issn><issn>1439-7633</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1vFDEMhiMEoqVw5YhG4sJlFudjMpMTQqtSkFbi0ILEKfJkkm1W2aQkM1X592TVZQWcbMuPX9l-CXlNYUUB2HszerNiwDiAUPwJOaeCq7aXnD895oKx_oy8KGUHAEpy-pyc8b4XclDDOflxk71bopl9ihiaa3zwc3rwsVmnuFu2ONvSuJRreY_BxrnZ4GiDj9smueZ7CjNubXtVsam5TpNf9s36FmO0obwkzxyGYl8d4wX59unyZv253Xy9-rL-uGkN78XcGieco1QAUx0depQOmERurUKmBEU-GQdoQHDejXQykwLEcbCdkV09reMX5MOj7t0y7u1k6pIZg77Lfo_5l07o9b-d6G_1Nt1rCoPkgzgovDsq5PRzsWXWe1-MDQGjTUvRbJCD7FklK_r2P3SXllw_d6AU1Lf3klVq9UiZnErJ1p22oaAPtumDbfpkWx148_cNJ_yPT_w35CyUgA</recordid><startdate>20231116</startdate><enddate>20231116</enddate><creator>Finkelstein, Darren S</creator><creator>Du Bois, J</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231116</creationdate><title>Trifunctional Saxitoxin Conjugates for Covalent Labeling of Voltage-Gated Sodium Channels</title><author>Finkelstein, Darren S ; Du Bois, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-cf4ff1140295187a6f026a3ee9a2941a3dcf0ac04335b1dcd90aab8e5c6542253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biotin</topic><topic>Coumarin</topic><topic>Covalence</topic><topic>Electric potential</topic><topic>Functional groups</topic><topic>Hippocampus</topic><topic>Integral membrane proteins</topic><topic>Ion channels</topic><topic>Isoforms</topic><topic>Labeling</topic><topic>Membranes</topic><topic>Nervous system</topic><topic>Neurons - metabolism</topic><topic>Plasma membranes</topic><topic>Protein Isoforms - metabolism</topic><topic>Proteins</topic><topic>Reagents</topic><topic>Saxitoxin</topic><topic>Sodium</topic><topic>Sodium channels</topic><topic>Sodium channels (voltage-gated)</topic><topic>Sodium conductance</topic><topic>Toxins</topic><topic>Voltage</topic><topic>Voltage-Gated Sodium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finkelstein, Darren S</creatorcontrib><creatorcontrib>Du Bois, J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finkelstein, Darren S</au><au>Du Bois, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trifunctional Saxitoxin Conjugates for Covalent Labeling of Voltage-Gated Sodium Channels</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2023-11-16</date><risdate>2023</risdate><volume>24</volume><issue>22</issue><spage>e202300493</spage><epage>e202300493</epage><pages>e202300493-e202300493</pages><issn>1439-4227</issn><issn>1439-7633</issn><eissn>1439-7633</eissn><abstract>Voltage-gated sodium ion channels (Na s) are integral membrane protein complexes responsible for electrical signal conduction in excitable cells. Methods that enable selective labeling of Na s hold potential value for understanding how channel regulation and post-translational modification are influenced during development and in response to diseases and disorders of the nervous system. We have developed chemical reagents patterned after (+)-saxitoxin (STX) - a potent and reversible inhibitor of multiple Na isoforms - and affixed with a reactive electrophile and either a biotin cofactor, fluorophore, or 'click' functional group for labeling wild-type channels. Our studies reveal enigmatic structural effects of the probes on the potency and efficiency of covalent protein modification. Among the compounds analyzed, a STX-maleimide-coumarin derivative is most effective at irreversibly blocking Na conductance when applied to recombinant Na s and endogenous channels expressed in hippocampal neurons. Mechanistic analysis supports the conclusion that high-affinity toxin binding is a prerequisite for covalent protein modification. Results from these studies are guiding the development of next-generation tool compounds for selective modification of Na s expressed in the plasma membranes of cells.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37746898</pmid><doi>10.1002/cbic.202300493</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2023-11, Vol.24 (22), p.e202300493-e202300493
issn 1439-4227
1439-7633
1439-7633
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10863845
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biotin
Coumarin
Covalence
Electric potential
Functional groups
Hippocampus
Integral membrane proteins
Ion channels
Isoforms
Labeling
Membranes
Nervous system
Neurons - metabolism
Plasma membranes
Protein Isoforms - metabolism
Proteins
Reagents
Saxitoxin
Sodium
Sodium channels
Sodium channels (voltage-gated)
Sodium conductance
Toxins
Voltage
Voltage-Gated Sodium Channels - metabolism
title Trifunctional Saxitoxin Conjugates for Covalent Labeling of Voltage-Gated Sodium Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trifunctional%20Saxitoxin%20Conjugates%20for%20Covalent%20Labeling%20of%20Voltage-Gated%20Sodium%20Channels&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Finkelstein,%20Darren%20S&rft.date=2023-11-16&rft.volume=24&rft.issue=22&rft.spage=e202300493&rft.epage=e202300493&rft.pages=e202300493-e202300493&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.202300493&rft_dat=%3Cproquest_pubme%3E2890633762%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890633762&rft_id=info:pmid/37746898&rfr_iscdi=true