Thermal and Quantum Barrier Passage as Potential-Driven Markovian Dynamics
Rapidly progressing laser technologies provide powerful tools to study potential barrier-passage dynamics in physical, chemical, and biological systems with unprecedented temporal and spatial resolution and a remarkable chemical and structural specificity. The available theories of barrier passage,...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2023-11, Vol.127 (44), p.9413-9422 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9422 |
---|---|
container_issue | 44 |
container_start_page | 9413 |
container_title | The journal of physical chemistry. B |
container_volume | 127 |
creator | Zheltikov, A. M. |
description | Rapidly progressing laser technologies provide powerful tools to study potential barrier-passage dynamics in physical, chemical, and biological systems with unprecedented temporal and spatial resolution and a remarkable chemical and structural specificity. The available theories of barrier passage, however, operate with equations, potentials, and parameters that are best suited for a specific area of research and a specific class of systems and processes. Making connections among these theories is often anything but easy. Here, we address this problem by presenting a unified framework for the description of a vast variety of classical and quantum barrier-passage phenomena, revealing an innate connection between various types of barrier-passage dynamics and providing closed-form equations showing how the signature exponentials in classical and quantum barrier-passage rates relate to and translate into each other. In this framework, the Arrhenius-law kinetics, the emergence of the Gibbs distribution, Hund’s molecular wave-packet well-to-well oscillatory dynamics, Keldysh photoionization, and Kramers’ escape over a potential barrier are all understood as manifestations of a potential-driven Markovian dynamics whereby a system evolves from a state of local stability. Key to the irreducibility of quantum tunneling to thermally activated barrier passage is the difference in the ways the diffusion-driving potentials emerge in these two tunneling settings, giving rise to stationary states with a distinctly different structure. |
doi_str_mv | 10.1021/acs.jpcb.3c02744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10863070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884674470</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-12e82aeb8cc6da8282861082efca595c45c8f3ce2b0feb3d9e1ff6157f8204753</originalsourceid><addsrcrecordid>eNp1UctOwzAQtBAIyuPOCeXIgRTbebknBOWtIkCCs7VxNtQlcYqdVOLvMW2o4IAsyyt5ZnY0Q8gho0NGOTsF5YazucqHkaI8i-MNMmAJp6G_2WY_p4ymO2TXuRmlPOEi3SY7UTaiySiLB-T-ZYq2hioAUwTPHZi2q4MLsFajDZ7AOXjDAFzw1LRoWg1VeGn1Ak3wAPa9WWgwweWngVort0-2SqgcHvTvHnm9vnoZ34aTx5u78fkkhEhkbcg4Cg6YC6XSAgT3x1sUHEsFyShRcaJEGSnkOS0xj4oRsrJMWZKVgtM4S6I9crbSnXd5jYXyvixUcm51DfZTNqDl3x-jp_KtWUi_JY1oRr3Cca9gm48OXStr7RRWFRhsOie5EHHq41xC6QqqbOOcxXK9h1H53YH0HcjvDmTfgacc_fa3JvyE7gEnK8CS2nTW-Lj-1_sCVnOUMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884674470</pqid></control><display><type>article</type><title>Thermal and Quantum Barrier Passage as Potential-Driven Markovian Dynamics</title><source>ACS Publications</source><creator>Zheltikov, A. M.</creator><creatorcontrib>Zheltikov, A. M.</creatorcontrib><description>Rapidly progressing laser technologies provide powerful tools to study potential barrier-passage dynamics in physical, chemical, and biological systems with unprecedented temporal and spatial resolution and a remarkable chemical and structural specificity. The available theories of barrier passage, however, operate with equations, potentials, and parameters that are best suited for a specific area of research and a specific class of systems and processes. Making connections among these theories is often anything but easy. Here, we address this problem by presenting a unified framework for the description of a vast variety of classical and quantum barrier-passage phenomena, revealing an innate connection between various types of barrier-passage dynamics and providing closed-form equations showing how the signature exponentials in classical and quantum barrier-passage rates relate to and translate into each other. In this framework, the Arrhenius-law kinetics, the emergence of the Gibbs distribution, Hund’s molecular wave-packet well-to-well oscillatory dynamics, Keldysh photoionization, and Kramers’ escape over a potential barrier are all understood as manifestations of a potential-driven Markovian dynamics whereby a system evolves from a state of local stability. Key to the irreducibility of quantum tunneling to thermally activated barrier passage is the difference in the ways the diffusion-driving potentials emerge in these two tunneling settings, giving rise to stationary states with a distinctly different structure.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.3c02744</identifier><identifier>PMID: 37905974</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biophysical and Biochemical Systems and Processes</subject><ispartof>The journal of physical chemistry. B, 2023-11, Vol.127 (44), p.9413-9422</ispartof><rights>2023 American Chemical Society</rights><rights>2023 American Chemical Society 2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a387t-12e82aeb8cc6da8282861082efca595c45c8f3ce2b0feb3d9e1ff6157f8204753</cites><orcidid>0000-0002-9138-0576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.3c02744$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.3c02744$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37905974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheltikov, A. M.</creatorcontrib><title>Thermal and Quantum Barrier Passage as Potential-Driven Markovian Dynamics</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Rapidly progressing laser technologies provide powerful tools to study potential barrier-passage dynamics in physical, chemical, and biological systems with unprecedented temporal and spatial resolution and a remarkable chemical and structural specificity. The available theories of barrier passage, however, operate with equations, potentials, and parameters that are best suited for a specific area of research and a specific class of systems and processes. Making connections among these theories is often anything but easy. Here, we address this problem by presenting a unified framework for the description of a vast variety of classical and quantum barrier-passage phenomena, revealing an innate connection between various types of barrier-passage dynamics and providing closed-form equations showing how the signature exponentials in classical and quantum barrier-passage rates relate to and translate into each other. In this framework, the Arrhenius-law kinetics, the emergence of the Gibbs distribution, Hund’s molecular wave-packet well-to-well oscillatory dynamics, Keldysh photoionization, and Kramers’ escape over a potential barrier are all understood as manifestations of a potential-driven Markovian dynamics whereby a system evolves from a state of local stability. Key to the irreducibility of quantum tunneling to thermally activated barrier passage is the difference in the ways the diffusion-driving potentials emerge in these two tunneling settings, giving rise to stationary states with a distinctly different structure.</description><subject>B: Biophysical and Biochemical Systems and Processes</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UctOwzAQtBAIyuPOCeXIgRTbebknBOWtIkCCs7VxNtQlcYqdVOLvMW2o4IAsyyt5ZnY0Q8gho0NGOTsF5YazucqHkaI8i-MNMmAJp6G_2WY_p4ymO2TXuRmlPOEi3SY7UTaiySiLB-T-ZYq2hioAUwTPHZi2q4MLsFajDZ7AOXjDAFzw1LRoWg1VeGn1Ak3wAPa9WWgwweWngVort0-2SqgcHvTvHnm9vnoZ34aTx5u78fkkhEhkbcg4Cg6YC6XSAgT3x1sUHEsFyShRcaJEGSnkOS0xj4oRsrJMWZKVgtM4S6I9crbSnXd5jYXyvixUcm51DfZTNqDl3x-jp_KtWUi_JY1oRr3Cca9gm48OXStr7RRWFRhsOie5EHHq41xC6QqqbOOcxXK9h1H53YH0HcjvDmTfgacc_fa3JvyE7gEnK8CS2nTW-Lj-1_sCVnOUMQ</recordid><startdate>20231109</startdate><enddate>20231109</enddate><creator>Zheltikov, A. M.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9138-0576</orcidid></search><sort><creationdate>20231109</creationdate><title>Thermal and Quantum Barrier Passage as Potential-Driven Markovian Dynamics</title><author>Zheltikov, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-12e82aeb8cc6da8282861082efca595c45c8f3ce2b0feb3d9e1ff6157f8204753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>B: Biophysical and Biochemical Systems and Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheltikov, A. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheltikov, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and Quantum Barrier Passage as Potential-Driven Markovian Dynamics</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2023-11-09</date><risdate>2023</risdate><volume>127</volume><issue>44</issue><spage>9413</spage><epage>9422</epage><pages>9413-9422</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Rapidly progressing laser technologies provide powerful tools to study potential barrier-passage dynamics in physical, chemical, and biological systems with unprecedented temporal and spatial resolution and a remarkable chemical and structural specificity. The available theories of barrier passage, however, operate with equations, potentials, and parameters that are best suited for a specific area of research and a specific class of systems and processes. Making connections among these theories is often anything but easy. Here, we address this problem by presenting a unified framework for the description of a vast variety of classical and quantum barrier-passage phenomena, revealing an innate connection between various types of barrier-passage dynamics and providing closed-form equations showing how the signature exponentials in classical and quantum barrier-passage rates relate to and translate into each other. In this framework, the Arrhenius-law kinetics, the emergence of the Gibbs distribution, Hund’s molecular wave-packet well-to-well oscillatory dynamics, Keldysh photoionization, and Kramers’ escape over a potential barrier are all understood as manifestations of a potential-driven Markovian dynamics whereby a system evolves from a state of local stability. Key to the irreducibility of quantum tunneling to thermally activated barrier passage is the difference in the ways the diffusion-driving potentials emerge in these two tunneling settings, giving rise to stationary states with a distinctly different structure.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37905974</pmid><doi>10.1021/acs.jpcb.3c02744</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9138-0576</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2023-11, Vol.127 (44), p.9413-9422 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10863070 |
source | ACS Publications |
subjects | B: Biophysical and Biochemical Systems and Processes |
title | Thermal and Quantum Barrier Passage as Potential-Driven Markovian Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20Quantum%20Barrier%20Passage%20as%20Potential-Driven%20Markovian%20Dynamics&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Zheltikov,%20A.%20M.&rft.date=2023-11-09&rft.volume=127&rft.issue=44&rft.spage=9413&rft.epage=9422&rft.pages=9413-9422&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.3c02744&rft_dat=%3Cproquest_pubme%3E2884674470%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884674470&rft_id=info:pmid/37905974&rfr_iscdi=true |