Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation

Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2024-02, Vol.300 (2), p.105626-105626, Article 105626
Hauptverfasser: Parmar, Gaganvir, Fong-McMaster, Claire, Pileggi, Chantal A., Patten, David A., Cuillerier, Alexanne, Myers, Stephanie, Wang, Ying, Hekimi, Siegfried, Cuperlovic-Culf, Miroslava, Harper, Mary-Ellen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105626
container_issue 2
container_start_page 105626
container_title The Journal of biological chemistry
container_volume 300
creator Parmar, Gaganvir
Fong-McMaster, Claire
Pileggi, Chantal A.
Patten, David A.
Cuillerier, Alexanne
Myers, Stephanie
Wang, Ying
Hekimi, Siegfried
Cuperlovic-Culf, Miroslava
Harper, Mary-Ellen
description Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 “respirasome” SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics.
doi_str_mv 10.1016/j.jbc.2024.105626
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10862015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824000024</els_id><sourcerecordid>2922448697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-6660407de852533967b6424dd80347b23537436b482eaeeeb6c68292590f58163</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoOj5-gBvp0k3HvJqmuBAdnyC6UXQX0vSOZmibmqSi_97IqOjGbMIl55x7cz-EdgmeEkzEwWK6qM2UYspTXQgqVtCEYMlyVpDHVTTBmJK8ooXcQJshLHA6vCLraINJSogkcoIejo2BEJx_z8JYj72N2c3p_fkJzwbtozV20BFCZvuss9GZZ9c33uo2M64bWnjLrpJtAP9dzp3vdLSu30Zrc90G2Pm6t9D9-dnd7DK_vr24mh1f54ZjHnMhBOa4bEAWtGCsEmUtOOVNIzHjZU1ZwUrORM0lBQ0AtTBC0vSlCs8LSQTbQkfL3GGsO2gM9NHrVg3edtq_K6et-vvS22f15F5V2pOgmBQpYf8rwbuXEUJUnQ0G2lb34MagUjfKuRRVmaRkKTXeheBh_tOHYPVJRC1UIqI-iaglkeTZ-z3gj-MbQRIcLgWQ1vRqwatgLPQGGuvBRNU4-0_8B2oxm_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922448697</pqid></control><display><type>article</type><title>Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Parmar, Gaganvir ; Fong-McMaster, Claire ; Pileggi, Chantal A. ; Patten, David A. ; Cuillerier, Alexanne ; Myers, Stephanie ; Wang, Ying ; Hekimi, Siegfried ; Cuperlovic-Culf, Miroslava ; Harper, Mary-Ellen</creator><creatorcontrib>Parmar, Gaganvir ; Fong-McMaster, Claire ; Pileggi, Chantal A. ; Patten, David A. ; Cuillerier, Alexanne ; Myers, Stephanie ; Wang, Ying ; Hekimi, Siegfried ; Cuperlovic-Culf, Miroslava ; Harper, Mary-Ellen</creatorcontrib><description>Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 “respirasome” SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.105626</identifier><identifier>PMID: 38211818</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Electron Transport ; electron transport chain ; Electron Transport Complex I - genetics ; Electron Transport Complex I - metabolism ; Electron Transport Complex III - genetics ; Electron Transport Complex III - metabolism ; Energy Metabolism ; HEK293 Cells ; Humans ; mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial Membranes - metabolism ; NDUFB4 ; oxidative phosphorylation ; respirasome ; steady-state metabolomics ; supercomplexes</subject><ispartof>The Journal of biological chemistry, 2024-02, Vol.300 (2), p.105626-105626, Article 105626</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-6660407de852533967b6424dd80347b23537436b482eaeeeb6c68292590f58163</cites><orcidid>0000-0003-3864-5886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862015/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862015/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38211818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parmar, Gaganvir</creatorcontrib><creatorcontrib>Fong-McMaster, Claire</creatorcontrib><creatorcontrib>Pileggi, Chantal A.</creatorcontrib><creatorcontrib>Patten, David A.</creatorcontrib><creatorcontrib>Cuillerier, Alexanne</creatorcontrib><creatorcontrib>Myers, Stephanie</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Hekimi, Siegfried</creatorcontrib><creatorcontrib>Cuperlovic-Culf, Miroslava</creatorcontrib><creatorcontrib>Harper, Mary-Ellen</creatorcontrib><title>Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 “respirasome” SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics.</description><subject>Electron Transport</subject><subject>electron transport chain</subject><subject>Electron Transport Complex I - genetics</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Electron Transport Complex III - genetics</subject><subject>Electron Transport Complex III - metabolism</subject><subject>Energy Metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>NDUFB4</subject><subject>oxidative phosphorylation</subject><subject>respirasome</subject><subject>steady-state metabolomics</subject><subject>supercomplexes</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLxDAUhYMoOj5-gBvp0k3HvJqmuBAdnyC6UXQX0vSOZmibmqSi_97IqOjGbMIl55x7cz-EdgmeEkzEwWK6qM2UYspTXQgqVtCEYMlyVpDHVTTBmJK8ooXcQJshLHA6vCLraINJSogkcoIejo2BEJx_z8JYj72N2c3p_fkJzwbtozV20BFCZvuss9GZZ9c33uo2M64bWnjLrpJtAP9dzp3vdLSu30Zrc90G2Pm6t9D9-dnd7DK_vr24mh1f54ZjHnMhBOa4bEAWtGCsEmUtOOVNIzHjZU1ZwUrORM0lBQ0AtTBC0vSlCs8LSQTbQkfL3GGsO2gM9NHrVg3edtq_K6et-vvS22f15F5V2pOgmBQpYf8rwbuXEUJUnQ0G2lb34MagUjfKuRRVmaRkKTXeheBh_tOHYPVJRC1UIqI-iaglkeTZ-z3gj-MbQRIcLgWQ1vRqwatgLPQGGuvBRNU4-0_8B2oxm_g</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Parmar, Gaganvir</creator><creator>Fong-McMaster, Claire</creator><creator>Pileggi, Chantal A.</creator><creator>Patten, David A.</creator><creator>Cuillerier, Alexanne</creator><creator>Myers, Stephanie</creator><creator>Wang, Ying</creator><creator>Hekimi, Siegfried</creator><creator>Cuperlovic-Culf, Miroslava</creator><creator>Harper, Mary-Ellen</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3864-5886</orcidid></search><sort><creationdate>20240201</creationdate><title>Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation</title><author>Parmar, Gaganvir ; Fong-McMaster, Claire ; Pileggi, Chantal A. ; Patten, David A. ; Cuillerier, Alexanne ; Myers, Stephanie ; Wang, Ying ; Hekimi, Siegfried ; Cuperlovic-Culf, Miroslava ; Harper, Mary-Ellen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-6660407de852533967b6424dd80347b23537436b482eaeeeb6c68292590f58163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electron Transport</topic><topic>electron transport chain</topic><topic>Electron Transport Complex I - genetics</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Electron Transport Complex III - genetics</topic><topic>Electron Transport Complex III - metabolism</topic><topic>Energy Metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>NDUFB4</topic><topic>oxidative phosphorylation</topic><topic>respirasome</topic><topic>steady-state metabolomics</topic><topic>supercomplexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parmar, Gaganvir</creatorcontrib><creatorcontrib>Fong-McMaster, Claire</creatorcontrib><creatorcontrib>Pileggi, Chantal A.</creatorcontrib><creatorcontrib>Patten, David A.</creatorcontrib><creatorcontrib>Cuillerier, Alexanne</creatorcontrib><creatorcontrib>Myers, Stephanie</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Hekimi, Siegfried</creatorcontrib><creatorcontrib>Cuperlovic-Culf, Miroslava</creatorcontrib><creatorcontrib>Harper, Mary-Ellen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parmar, Gaganvir</au><au>Fong-McMaster, Claire</au><au>Pileggi, Chantal A.</au><au>Patten, David A.</au><au>Cuillerier, Alexanne</au><au>Myers, Stephanie</au><au>Wang, Ying</au><au>Hekimi, Siegfried</au><au>Cuperlovic-Culf, Miroslava</au><au>Harper, Mary-Ellen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>300</volume><issue>2</issue><spage>105626</spage><epage>105626</epage><pages>105626-105626</pages><artnum>105626</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 “respirasome” SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38211818</pmid><doi>10.1016/j.jbc.2024.105626</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3864-5886</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2024-02, Vol.300 (2), p.105626-105626, Article 105626
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10862015
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Electron Transport
electron transport chain
Electron Transport Complex I - genetics
Electron Transport Complex I - metabolism
Electron Transport Complex III - genetics
Electron Transport Complex III - metabolism
Energy Metabolism
HEK293 Cells
Humans
mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial Membranes - metabolism
NDUFB4
oxidative phosphorylation
respirasome
steady-state metabolomics
supercomplexes
title Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accessory%20subunit%20NDUFB4%20participates%20in%20mitochondrial%20complex%20I%20supercomplex%20formation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Parmar,%20Gaganvir&rft.date=2024-02-01&rft.volume=300&rft.issue=2&rft.spage=105626&rft.epage=105626&rft.pages=105626-105626&rft.artnum=105626&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.105626&rft_dat=%3Cproquest_pubme%3E2922448697%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922448697&rft_id=info:pmid/38211818&rft_els_id=S0021925824000024&rfr_iscdi=true