Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation
Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2024-02, Vol.300 (2), p.105626-105626, Article 105626 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105626 |
---|---|
container_issue | 2 |
container_start_page | 105626 |
container_title | The Journal of biological chemistry |
container_volume | 300 |
creator | Parmar, Gaganvir Fong-McMaster, Claire Pileggi, Chantal A. Patten, David A. Cuillerier, Alexanne Myers, Stephanie Wang, Ying Hekimi, Siegfried Cuperlovic-Culf, Miroslava Harper, Mary-Ellen |
description | Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 “respirasome” SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics. |
doi_str_mv | 10.1016/j.jbc.2024.105626 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10862015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824000024</els_id><sourcerecordid>2922448697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-6660407de852533967b6424dd80347b23537436b482eaeeeb6c68292590f58163</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoOj5-gBvp0k3HvJqmuBAdnyC6UXQX0vSOZmibmqSi_97IqOjGbMIl55x7cz-EdgmeEkzEwWK6qM2UYspTXQgqVtCEYMlyVpDHVTTBmJK8ooXcQJshLHA6vCLraINJSogkcoIejo2BEJx_z8JYj72N2c3p_fkJzwbtozV20BFCZvuss9GZZ9c33uo2M64bWnjLrpJtAP9dzp3vdLSu30Zrc90G2Pm6t9D9-dnd7DK_vr24mh1f54ZjHnMhBOa4bEAWtGCsEmUtOOVNIzHjZU1ZwUrORM0lBQ0AtTBC0vSlCs8LSQTbQkfL3GGsO2gM9NHrVg3edtq_K6et-vvS22f15F5V2pOgmBQpYf8rwbuXEUJUnQ0G2lb34MagUjfKuRRVmaRkKTXeheBh_tOHYPVJRC1UIqI-iaglkeTZ-z3gj-MbQRIcLgWQ1vRqwatgLPQGGuvBRNU4-0_8B2oxm_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922448697</pqid></control><display><type>article</type><title>Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Parmar, Gaganvir ; Fong-McMaster, Claire ; Pileggi, Chantal A. ; Patten, David A. ; Cuillerier, Alexanne ; Myers, Stephanie ; Wang, Ying ; Hekimi, Siegfried ; Cuperlovic-Culf, Miroslava ; Harper, Mary-Ellen</creator><creatorcontrib>Parmar, Gaganvir ; Fong-McMaster, Claire ; Pileggi, Chantal A. ; Patten, David A. ; Cuillerier, Alexanne ; Myers, Stephanie ; Wang, Ying ; Hekimi, Siegfried ; Cuperlovic-Culf, Miroslava ; Harper, Mary-Ellen</creatorcontrib><description>Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 “respirasome” SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.105626</identifier><identifier>PMID: 38211818</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Electron Transport ; electron transport chain ; Electron Transport Complex I - genetics ; Electron Transport Complex I - metabolism ; Electron Transport Complex III - genetics ; Electron Transport Complex III - metabolism ; Energy Metabolism ; HEK293 Cells ; Humans ; mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial Membranes - metabolism ; NDUFB4 ; oxidative phosphorylation ; respirasome ; steady-state metabolomics ; supercomplexes</subject><ispartof>The Journal of biological chemistry, 2024-02, Vol.300 (2), p.105626-105626, Article 105626</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-6660407de852533967b6424dd80347b23537436b482eaeeeb6c68292590f58163</cites><orcidid>0000-0003-3864-5886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862015/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862015/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38211818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parmar, Gaganvir</creatorcontrib><creatorcontrib>Fong-McMaster, Claire</creatorcontrib><creatorcontrib>Pileggi, Chantal A.</creatorcontrib><creatorcontrib>Patten, David A.</creatorcontrib><creatorcontrib>Cuillerier, Alexanne</creatorcontrib><creatorcontrib>Myers, Stephanie</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Hekimi, Siegfried</creatorcontrib><creatorcontrib>Cuperlovic-Culf, Miroslava</creatorcontrib><creatorcontrib>Harper, Mary-Ellen</creatorcontrib><title>Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 “respirasome” SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics.</description><subject>Electron Transport</subject><subject>electron transport chain</subject><subject>Electron Transport Complex I - genetics</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Electron Transport Complex III - genetics</subject><subject>Electron Transport Complex III - metabolism</subject><subject>Energy Metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>NDUFB4</subject><subject>oxidative phosphorylation</subject><subject>respirasome</subject><subject>steady-state metabolomics</subject><subject>supercomplexes</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLxDAUhYMoOj5-gBvp0k3HvJqmuBAdnyC6UXQX0vSOZmibmqSi_97IqOjGbMIl55x7cz-EdgmeEkzEwWK6qM2UYspTXQgqVtCEYMlyVpDHVTTBmJK8ooXcQJshLHA6vCLraINJSogkcoIejo2BEJx_z8JYj72N2c3p_fkJzwbtozV20BFCZvuss9GZZ9c33uo2M64bWnjLrpJtAP9dzp3vdLSu30Zrc90G2Pm6t9D9-dnd7DK_vr24mh1f54ZjHnMhBOa4bEAWtGCsEmUtOOVNIzHjZU1ZwUrORM0lBQ0AtTBC0vSlCs8LSQTbQkfL3GGsO2gM9NHrVg3edtq_K6et-vvS22f15F5V2pOgmBQpYf8rwbuXEUJUnQ0G2lb34MagUjfKuRRVmaRkKTXeheBh_tOHYPVJRC1UIqI-iaglkeTZ-z3gj-MbQRIcLgWQ1vRqwatgLPQGGuvBRNU4-0_8B2oxm_g</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Parmar, Gaganvir</creator><creator>Fong-McMaster, Claire</creator><creator>Pileggi, Chantal A.</creator><creator>Patten, David A.</creator><creator>Cuillerier, Alexanne</creator><creator>Myers, Stephanie</creator><creator>Wang, Ying</creator><creator>Hekimi, Siegfried</creator><creator>Cuperlovic-Culf, Miroslava</creator><creator>Harper, Mary-Ellen</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3864-5886</orcidid></search><sort><creationdate>20240201</creationdate><title>Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation</title><author>Parmar, Gaganvir ; Fong-McMaster, Claire ; Pileggi, Chantal A. ; Patten, David A. ; Cuillerier, Alexanne ; Myers, Stephanie ; Wang, Ying ; Hekimi, Siegfried ; Cuperlovic-Culf, Miroslava ; Harper, Mary-Ellen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-6660407de852533967b6424dd80347b23537436b482eaeeeb6c68292590f58163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electron Transport</topic><topic>electron transport chain</topic><topic>Electron Transport Complex I - genetics</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Electron Transport Complex III - genetics</topic><topic>Electron Transport Complex III - metabolism</topic><topic>Energy Metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>NDUFB4</topic><topic>oxidative phosphorylation</topic><topic>respirasome</topic><topic>steady-state metabolomics</topic><topic>supercomplexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parmar, Gaganvir</creatorcontrib><creatorcontrib>Fong-McMaster, Claire</creatorcontrib><creatorcontrib>Pileggi, Chantal A.</creatorcontrib><creatorcontrib>Patten, David A.</creatorcontrib><creatorcontrib>Cuillerier, Alexanne</creatorcontrib><creatorcontrib>Myers, Stephanie</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Hekimi, Siegfried</creatorcontrib><creatorcontrib>Cuperlovic-Culf, Miroslava</creatorcontrib><creatorcontrib>Harper, Mary-Ellen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parmar, Gaganvir</au><au>Fong-McMaster, Claire</au><au>Pileggi, Chantal A.</au><au>Patten, David A.</au><au>Cuillerier, Alexanne</au><au>Myers, Stephanie</au><au>Wang, Ying</au><au>Hekimi, Siegfried</au><au>Cuperlovic-Culf, Miroslava</au><au>Harper, Mary-Ellen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>300</volume><issue>2</issue><spage>105626</spage><epage>105626</epage><pages>105626-105626</pages><artnum>105626</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 “respirasome” SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38211818</pmid><doi>10.1016/j.jbc.2024.105626</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3864-5886</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2024-02, Vol.300 (2), p.105626-105626, Article 105626 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10862015 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Electron Transport electron transport chain Electron Transport Complex I - genetics Electron Transport Complex I - metabolism Electron Transport Complex III - genetics Electron Transport Complex III - metabolism Energy Metabolism HEK293 Cells Humans mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondrial Membranes - metabolism NDUFB4 oxidative phosphorylation respirasome steady-state metabolomics supercomplexes |
title | Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accessory%20subunit%20NDUFB4%20participates%20in%20mitochondrial%20complex%20I%20supercomplex%20formation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Parmar,%20Gaganvir&rft.date=2024-02-01&rft.volume=300&rft.issue=2&rft.spage=105626&rft.epage=105626&rft.pages=105626-105626&rft.artnum=105626&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.105626&rft_dat=%3Cproquest_pubme%3E2922448697%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922448697&rft_id=info:pmid/38211818&rft_els_id=S0021925824000024&rfr_iscdi=true |