Unraveling the Interplay between Quantum Transport and Geometrical Conformations in Monocyclic Hydrocarbons’ Molecular Junctions

In the field of molecular electronics, especially in quantum transport experiments, determining the geometrical configurations of a single molecule trapped between two electrodes can be challenging. To address this challenge, we employed a combination of molecular dynamics (MD) simulations and elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-12, Vol.127 (48), p.23303-23311
Hauptverfasser: Martinez-Garcia, A., de Ara, T., Pastor-Amat, L., Untiedt, C., Lombardi, E. B., Dednam, W., Sabater, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23311
container_issue 48
container_start_page 23303
container_title Journal of physical chemistry. C
container_volume 127
creator Martinez-Garcia, A.
de Ara, T.
Pastor-Amat, L.
Untiedt, C.
Lombardi, E. B.
Dednam, W.
Sabater, C.
description In the field of molecular electronics, especially in quantum transport experiments, determining the geometrical configurations of a single molecule trapped between two electrodes can be challenging. To address this challenge, we employed a combination of molecular dynamics (MD) simulations and electronic transport calculations based on density functional theory to determine the molecular orientation in our break-junction experiments under ambient conditions. The molecules used in this study are common solvents used in molecular electronics, such as benzene, toluene (aromatic), and cyclohexane (aliphatic). Furthermore, we introduced a novel criterion based on the normal vector of the surface formed by the cavity of these ring-shaped monocyclic hydrocarbon molecules to clearly define the orientation of the molecules with respect to the electrodes. By comparing the results obtained through MD simulations and density functional theory with experimental data, we observed that both are in good agreement. This agreement helps us to uncover the different geometrical configurations that these molecules adopt in break-junction experiments. This approach can significantly improve our understanding of molecular electronics, especially when using more complex cyclic hydrocarbons.
doi_str_mv 10.1021/acs.jpcc.3c05393
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10861133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926519184</sourcerecordid><originalsourceid>FETCH-LOGICAL-a434t-5f535fd125d2d661673d7b2b4b3701ece43095f1fc2ba356d76fc19e67574ebb3</originalsourceid><addsrcrecordid>eNp1kTtvFDEUhS1ERB7QU0UuKdjFj_HMToXQCvJQIoSU1JbtuZM48tgT25NoO5R_kb-XXxInu6ygoLqWznfOvfJB6CMlc0oY_aJMmt-Mxsy5IYK3_A3aoy1ns6YS4u32XTW7aD-lG1IYQvk7tMsXXDDG2z30cOmjugNn_RXO14BPfIY4OrXCGvI9gMe_JuXzNOCLqHwaQ8xY-Q4fQRggR2uUw8vg-xAHlW3wCVuPz4MPZmWcNfh41cVgVNRFevr9WCQHZnIq4tPJm1fHe7TTK5fgw2YeoMsf3y-Wx7Ozn0cny29nM1XxKs9EL7joO8pEx7q6pnXDu0YzXWneEAoGKk5a0dPeMK24qLum7g1toW5EU4HW_AB9XeeOkx6gM-BzVE6O0Q4qrmRQVv6reHstr8KdpGRRU8p5Sfi0SYjhdoKU5WCTAeeUhzAlyVpWC9rSRVVQskZNDClF6Ld7KJEv3cnSnXzpTm66K5bDv-_bGv6UVYDPa-DVGqboy3f9P-8ZW2yrGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926519184</pqid></control><display><type>article</type><title>Unraveling the Interplay between Quantum Transport and Geometrical Conformations in Monocyclic Hydrocarbons’ Molecular Junctions</title><source>ACS Publications</source><creator>Martinez-Garcia, A. ; de Ara, T. ; Pastor-Amat, L. ; Untiedt, C. ; Lombardi, E. B. ; Dednam, W. ; Sabater, C.</creator><creatorcontrib>Martinez-Garcia, A. ; de Ara, T. ; Pastor-Amat, L. ; Untiedt, C. ; Lombardi, E. B. ; Dednam, W. ; Sabater, C.</creatorcontrib><description>In the field of molecular electronics, especially in quantum transport experiments, determining the geometrical configurations of a single molecule trapped between two electrodes can be challenging. To address this challenge, we employed a combination of molecular dynamics (MD) simulations and electronic transport calculations based on density functional theory to determine the molecular orientation in our break-junction experiments under ambient conditions. The molecules used in this study are common solvents used in molecular electronics, such as benzene, toluene (aromatic), and cyclohexane (aliphatic). Furthermore, we introduced a novel criterion based on the normal vector of the surface formed by the cavity of these ring-shaped monocyclic hydrocarbon molecules to clearly define the orientation of the molecules with respect to the electrodes. By comparing the results obtained through MD simulations and density functional theory with experimental data, we observed that both are in good agreement. This agreement helps us to uncover the different geometrical configurations that these molecules adopt in break-junction experiments. This approach can significantly improve our understanding of molecular electronics, especially when using more complex cyclic hydrocarbons.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.3c05393</identifier><identifier>PMID: 38352239</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2023-12, Vol.127 (48), p.23303-23311</ispartof><rights>2023 American Chemical Society</rights><rights>2023 American Chemical Society.</rights><rights>2023 American Chemical Society 2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a434t-5f535fd125d2d661673d7b2b4b3701ece43095f1fc2ba356d76fc19e67574ebb3</citedby><cites>FETCH-LOGICAL-a434t-5f535fd125d2d661673d7b2b4b3701ece43095f1fc2ba356d76fc19e67574ebb3</cites><orcidid>0000-0001-8586-9976 ; 0000-0001-6139-7433 ; 0000-0003-4800-082X ; 0000-0003-0972-7911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.3c05393$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.3c05393$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38352239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinez-Garcia, A.</creatorcontrib><creatorcontrib>de Ara, T.</creatorcontrib><creatorcontrib>Pastor-Amat, L.</creatorcontrib><creatorcontrib>Untiedt, C.</creatorcontrib><creatorcontrib>Lombardi, E. B.</creatorcontrib><creatorcontrib>Dednam, W.</creatorcontrib><creatorcontrib>Sabater, C.</creatorcontrib><title>Unraveling the Interplay between Quantum Transport and Geometrical Conformations in Monocyclic Hydrocarbons’ Molecular Junctions</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>In the field of molecular electronics, especially in quantum transport experiments, determining the geometrical configurations of a single molecule trapped between two electrodes can be challenging. To address this challenge, we employed a combination of molecular dynamics (MD) simulations and electronic transport calculations based on density functional theory to determine the molecular orientation in our break-junction experiments under ambient conditions. The molecules used in this study are common solvents used in molecular electronics, such as benzene, toluene (aromatic), and cyclohexane (aliphatic). Furthermore, we introduced a novel criterion based on the normal vector of the surface formed by the cavity of these ring-shaped monocyclic hydrocarbon molecules to clearly define the orientation of the molecules with respect to the electrodes. By comparing the results obtained through MD simulations and density functional theory with experimental data, we observed that both are in good agreement. This agreement helps us to uncover the different geometrical configurations that these molecules adopt in break-junction experiments. This approach can significantly improve our understanding of molecular electronics, especially when using more complex cyclic hydrocarbons.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kTtvFDEUhS1ERB7QU0UuKdjFj_HMToXQCvJQIoSU1JbtuZM48tgT25NoO5R_kb-XXxInu6ygoLqWznfOvfJB6CMlc0oY_aJMmt-Mxsy5IYK3_A3aoy1ns6YS4u32XTW7aD-lG1IYQvk7tMsXXDDG2z30cOmjugNn_RXO14BPfIY4OrXCGvI9gMe_JuXzNOCLqHwaQ8xY-Q4fQRggR2uUw8vg-xAHlW3wCVuPz4MPZmWcNfh41cVgVNRFevr9WCQHZnIq4tPJm1fHe7TTK5fgw2YeoMsf3y-Wx7Ozn0cny29nM1XxKs9EL7joO8pEx7q6pnXDu0YzXWneEAoGKk5a0dPeMK24qLum7g1toW5EU4HW_AB9XeeOkx6gM-BzVE6O0Q4qrmRQVv6reHstr8KdpGRRU8p5Sfi0SYjhdoKU5WCTAeeUhzAlyVpWC9rSRVVQskZNDClF6Ld7KJEv3cnSnXzpTm66K5bDv-_bGv6UVYDPa-DVGqboy3f9P-8ZW2yrGg</recordid><startdate>20231207</startdate><enddate>20231207</enddate><creator>Martinez-Garcia, A.</creator><creator>de Ara, T.</creator><creator>Pastor-Amat, L.</creator><creator>Untiedt, C.</creator><creator>Lombardi, E. B.</creator><creator>Dednam, W.</creator><creator>Sabater, C.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8586-9976</orcidid><orcidid>https://orcid.org/0000-0001-6139-7433</orcidid><orcidid>https://orcid.org/0000-0003-4800-082X</orcidid><orcidid>https://orcid.org/0000-0003-0972-7911</orcidid></search><sort><creationdate>20231207</creationdate><title>Unraveling the Interplay between Quantum Transport and Geometrical Conformations in Monocyclic Hydrocarbons’ Molecular Junctions</title><author>Martinez-Garcia, A. ; de Ara, T. ; Pastor-Amat, L. ; Untiedt, C. ; Lombardi, E. B. ; Dednam, W. ; Sabater, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a434t-5f535fd125d2d661673d7b2b4b3701ece43095f1fc2ba356d76fc19e67574ebb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Garcia, A.</creatorcontrib><creatorcontrib>de Ara, T.</creatorcontrib><creatorcontrib>Pastor-Amat, L.</creatorcontrib><creatorcontrib>Untiedt, C.</creatorcontrib><creatorcontrib>Lombardi, E. B.</creatorcontrib><creatorcontrib>Dednam, W.</creatorcontrib><creatorcontrib>Sabater, C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Garcia, A.</au><au>de Ara, T.</au><au>Pastor-Amat, L.</au><au>Untiedt, C.</au><au>Lombardi, E. B.</au><au>Dednam, W.</au><au>Sabater, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Interplay between Quantum Transport and Geometrical Conformations in Monocyclic Hydrocarbons’ Molecular Junctions</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-12-07</date><risdate>2023</risdate><volume>127</volume><issue>48</issue><spage>23303</spage><epage>23311</epage><pages>23303-23311</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>In the field of molecular electronics, especially in quantum transport experiments, determining the geometrical configurations of a single molecule trapped between two electrodes can be challenging. To address this challenge, we employed a combination of molecular dynamics (MD) simulations and electronic transport calculations based on density functional theory to determine the molecular orientation in our break-junction experiments under ambient conditions. The molecules used in this study are common solvents used in molecular electronics, such as benzene, toluene (aromatic), and cyclohexane (aliphatic). Furthermore, we introduced a novel criterion based on the normal vector of the surface formed by the cavity of these ring-shaped monocyclic hydrocarbon molecules to clearly define the orientation of the molecules with respect to the electrodes. By comparing the results obtained through MD simulations and density functional theory with experimental data, we observed that both are in good agreement. This agreement helps us to uncover the different geometrical configurations that these molecules adopt in break-junction experiments. This approach can significantly improve our understanding of molecular electronics, especially when using more complex cyclic hydrocarbons.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38352239</pmid><doi>10.1021/acs.jpcc.3c05393</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8586-9976</orcidid><orcidid>https://orcid.org/0000-0001-6139-7433</orcidid><orcidid>https://orcid.org/0000-0003-4800-082X</orcidid><orcidid>https://orcid.org/0000-0003-0972-7911</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2023-12, Vol.127 (48), p.23303-23311
issn 1932-7447
1932-7455
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10861133
source ACS Publications
subjects C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials
title Unraveling the Interplay between Quantum Transport and Geometrical Conformations in Monocyclic Hydrocarbons’ Molecular Junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Interplay%20between%20Quantum%20Transport%20and%20Geometrical%20Conformations%20in%20Monocyclic%20Hydrocarbons%E2%80%99%20Molecular%20Junctions&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Martinez-Garcia,%20A.&rft.date=2023-12-07&rft.volume=127&rft.issue=48&rft.spage=23303&rft.epage=23311&rft.pages=23303-23311&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.3c05393&rft_dat=%3Cproquest_pubme%3E2926519184%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926519184&rft_id=info:pmid/38352239&rfr_iscdi=true