Predicting pressure gradient using artificial intelligence for transcatheter aortic valve replacement

After transcatheter aortic valve replacement, the mean transvalvular pressure gradient indicates the effectiveness of the therapy. The objective is to develop artificial intelligence to predict the post–transcatheter aortic valve replacement aortic valve pressure gradient and aortic valve area from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JTCVS techniques 2024-02, Vol.23, p.5-17
Hauptverfasser: Dasi, Anoushka, Lee, Beom, Polsani, Venkateshwar, Yadav, Pradeep, Dasi, Lakshmi Prasad, Thourani, Vinod H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 5
container_title JTCVS techniques
container_volume 23
creator Dasi, Anoushka
Lee, Beom
Polsani, Venkateshwar
Yadav, Pradeep
Dasi, Lakshmi Prasad
Thourani, Vinod H.
description After transcatheter aortic valve replacement, the mean transvalvular pressure gradient indicates the effectiveness of the therapy. The objective is to develop artificial intelligence to predict the post–transcatheter aortic valve replacement aortic valve pressure gradient and aortic valve area from preprocedural echocardiography and computed tomography data. A retrospective study was conducted on patients who underwent transcatheter aortic valve replacement due to aortic valve stenosis. A total of 1091 patients were analyzed for pressure gradient predictions (mean age 76.8 ± 9.2 years, 57.8% male), and 1063 patients were analyzed for aortic valve area predictions (mean age 76.7 ± 9.3 years, 57.2% male). An artificial intelligence learning model was trained (training: n = 663 patients, validation: n = 206 patients) and tested (testing: n = 222 patients) to predict pressure gradient, and a separate artificial intelligence learning model was trained (training: n = 640 patients, validation: n = 218 patients) and tested (testing: n = 205 patients) for predicting aortic valve area. The mean absolute error for pressure gradient and aortic valve area predictions was 3.0 mm Hg and 0.45 cm2, respectively. Valve sheath size, body surface area, and age were determined to be the top 3 predictors for pressure gradient, and valve sheath size, left ventricular ejection fraction, and aortic annulus mean diameter were identified to be the top 3 predictors of post–transcatheter aortic valve replacement aortic valve area. A training dataset size of more than 500 patients demonstrated good robustness of the artificial intelligence models for pressure gradient and aortic valve area. The artificial intelligence–based algorithm has demonstrated potential in predicting post–transcatheter aortic valve replacement transvalvular pressure gradient predictions for patients with aortic valve stenosis. Further studies are necessary to differentiate pressure gradient between valve types. [Display omitted]
doi_str_mv 10.1016/j.xjtc.2023.11.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10859647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666250723004625</els_id><sourcerecordid>2926520839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-15653cbab9399aa6578cf2a721cb6ec5035340fe23c9748a79a4da7558a7f5013</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CAfOSywR-xk0hICFV8SZXgAGdrdjLZepVNlrGzgn-Poy1VuXDyyH7nmfH7CvFSq0or7d_sq1_7jJVRxlZaV0rrJ-LSeO83xqnm6aP6QlyntFdKGaetaevn4sK21hml1aWgb0x9xBynnTwypbQwyR1DH2nKcknrPXCOQ8QIo4xTpnGMO5qQ5DCzzAxTQsh3lIklzEWK8gTjiSTTcQSkQwG9EM8GGBNd359X4sfHD99vPm9uv376cvP-doO183mjnXcWt7DtbNcBeNe0OBhojMatJ3TKOlurgYzFrqlbaDqoe2icK-XglLZX4t2Ze1y2B-qxjGYYw5HjAfh3mCGGf1-meBd28ylo1brO100hvL4n8PxzoZTDISYsf4aJ5iUF0xlfrGttV6TmLEWeU2IaHuZoFdaMwj6sGYU1o6B1KBmVplePN3xo-ZtIEbw9C6j4dIrEIWFc7e4jE-bQz_F__D9KmKXI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926520839</pqid></control><display><type>article</type><title>Predicting pressure gradient using artificial intelligence for transcatheter aortic valve replacement</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Dasi, Anoushka ; Lee, Beom ; Polsani, Venkateshwar ; Yadav, Pradeep ; Dasi, Lakshmi Prasad ; Thourani, Vinod H.</creator><creatorcontrib>Dasi, Anoushka ; Lee, Beom ; Polsani, Venkateshwar ; Yadav, Pradeep ; Dasi, Lakshmi Prasad ; Thourani, Vinod H.</creatorcontrib><description>After transcatheter aortic valve replacement, the mean transvalvular pressure gradient indicates the effectiveness of the therapy. The objective is to develop artificial intelligence to predict the post–transcatheter aortic valve replacement aortic valve pressure gradient and aortic valve area from preprocedural echocardiography and computed tomography data. A retrospective study was conducted on patients who underwent transcatheter aortic valve replacement due to aortic valve stenosis. A total of 1091 patients were analyzed for pressure gradient predictions (mean age 76.8 ± 9.2 years, 57.8% male), and 1063 patients were analyzed for aortic valve area predictions (mean age 76.7 ± 9.3 years, 57.2% male). An artificial intelligence learning model was trained (training: n = 663 patients, validation: n = 206 patients) and tested (testing: n = 222 patients) to predict pressure gradient, and a separate artificial intelligence learning model was trained (training: n = 640 patients, validation: n = 218 patients) and tested (testing: n = 205 patients) for predicting aortic valve area. The mean absolute error for pressure gradient and aortic valve area predictions was 3.0 mm Hg and 0.45 cm2, respectively. Valve sheath size, body surface area, and age were determined to be the top 3 predictors for pressure gradient, and valve sheath size, left ventricular ejection fraction, and aortic annulus mean diameter were identified to be the top 3 predictors of post–transcatheter aortic valve replacement aortic valve area. A training dataset size of more than 500 patients demonstrated good robustness of the artificial intelligence models for pressure gradient and aortic valve area. The artificial intelligence–based algorithm has demonstrated potential in predicting post–transcatheter aortic valve replacement transvalvular pressure gradient predictions for patients with aortic valve stenosis. Further studies are necessary to differentiate pressure gradient between valve types. [Display omitted]</description><identifier>ISSN: 2666-2507</identifier><identifier>EISSN: 2666-2507</identifier><identifier>DOI: 10.1016/j.xjtc.2023.11.011</identifier><identifier>PMID: 38352010</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult: Aortic Valve ; aortic stenosis ; aortic valve ; TAVR</subject><ispartof>JTCVS techniques, 2024-02, Vol.23, p.5-17</ispartof><rights>2023 The Author(s)</rights><rights>2023 The Author(s).</rights><rights>2023 The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-15653cbab9399aa6578cf2a721cb6ec5035340fe23c9748a79a4da7558a7f5013</citedby><cites>FETCH-LOGICAL-c456t-15653cbab9399aa6578cf2a721cb6ec5035340fe23c9748a79a4da7558a7f5013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10859647/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10859647/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38352010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dasi, Anoushka</creatorcontrib><creatorcontrib>Lee, Beom</creatorcontrib><creatorcontrib>Polsani, Venkateshwar</creatorcontrib><creatorcontrib>Yadav, Pradeep</creatorcontrib><creatorcontrib>Dasi, Lakshmi Prasad</creatorcontrib><creatorcontrib>Thourani, Vinod H.</creatorcontrib><title>Predicting pressure gradient using artificial intelligence for transcatheter aortic valve replacement</title><title>JTCVS techniques</title><addtitle>JTCVS Tech</addtitle><description>After transcatheter aortic valve replacement, the mean transvalvular pressure gradient indicates the effectiveness of the therapy. The objective is to develop artificial intelligence to predict the post–transcatheter aortic valve replacement aortic valve pressure gradient and aortic valve area from preprocedural echocardiography and computed tomography data. A retrospective study was conducted on patients who underwent transcatheter aortic valve replacement due to aortic valve stenosis. A total of 1091 patients were analyzed for pressure gradient predictions (mean age 76.8 ± 9.2 years, 57.8% male), and 1063 patients were analyzed for aortic valve area predictions (mean age 76.7 ± 9.3 years, 57.2% male). An artificial intelligence learning model was trained (training: n = 663 patients, validation: n = 206 patients) and tested (testing: n = 222 patients) to predict pressure gradient, and a separate artificial intelligence learning model was trained (training: n = 640 patients, validation: n = 218 patients) and tested (testing: n = 205 patients) for predicting aortic valve area. The mean absolute error for pressure gradient and aortic valve area predictions was 3.0 mm Hg and 0.45 cm2, respectively. Valve sheath size, body surface area, and age were determined to be the top 3 predictors for pressure gradient, and valve sheath size, left ventricular ejection fraction, and aortic annulus mean diameter were identified to be the top 3 predictors of post–transcatheter aortic valve replacement aortic valve area. A training dataset size of more than 500 patients demonstrated good robustness of the artificial intelligence models for pressure gradient and aortic valve area. The artificial intelligence–based algorithm has demonstrated potential in predicting post–transcatheter aortic valve replacement transvalvular pressure gradient predictions for patients with aortic valve stenosis. Further studies are necessary to differentiate pressure gradient between valve types. [Display omitted]</description><subject>Adult: Aortic Valve</subject><subject>aortic stenosis</subject><subject>aortic valve</subject><subject>TAVR</subject><issn>2666-2507</issn><issn>2666-2507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EolXpH-CAfOSywR-xk0hICFV8SZXgAGdrdjLZepVNlrGzgn-Poy1VuXDyyH7nmfH7CvFSq0or7d_sq1_7jJVRxlZaV0rrJ-LSeO83xqnm6aP6QlyntFdKGaetaevn4sK21hml1aWgb0x9xBynnTwypbQwyR1DH2nKcknrPXCOQ8QIo4xTpnGMO5qQ5DCzzAxTQsh3lIklzEWK8gTjiSTTcQSkQwG9EM8GGBNd359X4sfHD99vPm9uv376cvP-doO183mjnXcWt7DtbNcBeNe0OBhojMatJ3TKOlurgYzFrqlbaDqoe2icK-XglLZX4t2Ze1y2B-qxjGYYw5HjAfh3mCGGf1-meBd28ylo1brO100hvL4n8PxzoZTDISYsf4aJ5iUF0xlfrGttV6TmLEWeU2IaHuZoFdaMwj6sGYU1o6B1KBmVplePN3xo-ZtIEbw9C6j4dIrEIWFc7e4jE-bQz_F__D9KmKXI</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Dasi, Anoushka</creator><creator>Lee, Beom</creator><creator>Polsani, Venkateshwar</creator><creator>Yadav, Pradeep</creator><creator>Dasi, Lakshmi Prasad</creator><creator>Thourani, Vinod H.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240201</creationdate><title>Predicting pressure gradient using artificial intelligence for transcatheter aortic valve replacement</title><author>Dasi, Anoushka ; Lee, Beom ; Polsani, Venkateshwar ; Yadav, Pradeep ; Dasi, Lakshmi Prasad ; Thourani, Vinod H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-15653cbab9399aa6578cf2a721cb6ec5035340fe23c9748a79a4da7558a7f5013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult: Aortic Valve</topic><topic>aortic stenosis</topic><topic>aortic valve</topic><topic>TAVR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dasi, Anoushka</creatorcontrib><creatorcontrib>Lee, Beom</creatorcontrib><creatorcontrib>Polsani, Venkateshwar</creatorcontrib><creatorcontrib>Yadav, Pradeep</creatorcontrib><creatorcontrib>Dasi, Lakshmi Prasad</creatorcontrib><creatorcontrib>Thourani, Vinod H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JTCVS techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dasi, Anoushka</au><au>Lee, Beom</au><au>Polsani, Venkateshwar</au><au>Yadav, Pradeep</au><au>Dasi, Lakshmi Prasad</au><au>Thourani, Vinod H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting pressure gradient using artificial intelligence for transcatheter aortic valve replacement</atitle><jtitle>JTCVS techniques</jtitle><addtitle>JTCVS Tech</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>23</volume><spage>5</spage><epage>17</epage><pages>5-17</pages><issn>2666-2507</issn><eissn>2666-2507</eissn><abstract>After transcatheter aortic valve replacement, the mean transvalvular pressure gradient indicates the effectiveness of the therapy. The objective is to develop artificial intelligence to predict the post–transcatheter aortic valve replacement aortic valve pressure gradient and aortic valve area from preprocedural echocardiography and computed tomography data. A retrospective study was conducted on patients who underwent transcatheter aortic valve replacement due to aortic valve stenosis. A total of 1091 patients were analyzed for pressure gradient predictions (mean age 76.8 ± 9.2 years, 57.8% male), and 1063 patients were analyzed for aortic valve area predictions (mean age 76.7 ± 9.3 years, 57.2% male). An artificial intelligence learning model was trained (training: n = 663 patients, validation: n = 206 patients) and tested (testing: n = 222 patients) to predict pressure gradient, and a separate artificial intelligence learning model was trained (training: n = 640 patients, validation: n = 218 patients) and tested (testing: n = 205 patients) for predicting aortic valve area. The mean absolute error for pressure gradient and aortic valve area predictions was 3.0 mm Hg and 0.45 cm2, respectively. Valve sheath size, body surface area, and age were determined to be the top 3 predictors for pressure gradient, and valve sheath size, left ventricular ejection fraction, and aortic annulus mean diameter were identified to be the top 3 predictors of post–transcatheter aortic valve replacement aortic valve area. A training dataset size of more than 500 patients demonstrated good robustness of the artificial intelligence models for pressure gradient and aortic valve area. The artificial intelligence–based algorithm has demonstrated potential in predicting post–transcatheter aortic valve replacement transvalvular pressure gradient predictions for patients with aortic valve stenosis. Further studies are necessary to differentiate pressure gradient between valve types. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38352010</pmid><doi>10.1016/j.xjtc.2023.11.011</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-2507
ispartof JTCVS techniques, 2024-02, Vol.23, p.5-17
issn 2666-2507
2666-2507
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10859647
source EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adult: Aortic Valve
aortic stenosis
aortic valve
TAVR
title Predicting pressure gradient using artificial intelligence for transcatheter aortic valve replacement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20pressure%20gradient%20using%20artificial%20intelligence%20for%20transcatheter%20aortic%20valve%20replacement&rft.jtitle=JTCVS%20techniques&rft.au=Dasi,%20Anoushka&rft.date=2024-02-01&rft.volume=23&rft.spage=5&rft.epage=17&rft.pages=5-17&rft.issn=2666-2507&rft.eissn=2666-2507&rft_id=info:doi/10.1016/j.xjtc.2023.11.011&rft_dat=%3Cproquest_pubme%3E2926520839%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926520839&rft_id=info:pmid/38352010&rft_els_id=S2666250723004625&rfr_iscdi=true