Sparse species interactions reproduce abundance correlation patterns in microbial communities
During the last decades, macroecology has identified broad-scale patterns of abundances and diversity of microbial communities and put forward some potential explanations for them. However, these advances are not paralleled by a full understanding of the dynamical processes behind them. In particula...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-01, Vol.121 (5), p.e2309575121 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | e2309575121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Camacho-Mateu, José Lampo, Aniello Sireci, Matteo Muñoz, Miguel A Cuesta, José A |
description | During the last decades, macroecology has identified broad-scale patterns of abundances and diversity of microbial communities and put forward some potential explanations for them. However, these advances are not paralleled by a full understanding of the dynamical processes behind them. In particular, abundance fluctuations of different species are found to be correlated, both across time and across communities in metagenomic samples. Reproducing such correlations through appropriate population models remains an open challenge. The present paper tackles this problem and points to sparse species interactions as a necessary mechanism to account for them. Specifically, we discuss several possibilities to include interactions in population models and recognize Lotka-Volterra constants as a successful ansatz. For this, we design a Bayesian inference algorithm to extract sets of interaction constants able to reproduce empirical probability distributions of pairwise correlations for diverse biomes. Importantly, the inferred models still reproduce well-known single-species macroecological patterns concerning abundance fluctuations across both species and communities. Endorsed by the agreement with the empirically observed phenomenology, our analyses provide insights into the properties of the networks of microbial interactions, revealing that sparsity is a crucial feature. |
doi_str_mv | 10.1073/pnas.2309575121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10853627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921195821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-dd44078531eaeb658efaf37c6daeeba8c8a6f4523d035c3dd6523a11d0c7bfc3</originalsourceid><addsrcrecordid>eNpdkc1rFjEQxoMo9m3r2ZssePGy7UyyH3lPIsUvKPRgryXMJrOaspusyW7B_968tFbtaQbmN898PEK8RjhD6NX5EiifSQX7tm9R4jOxQ9hj3TV7eC52ALKvdSObI3Gc8y1A4TS8FEdKy66DFnfi5ttCKXOVF7aec-XDyons6mPIVeIlRbdZrmjYgqNQMhtT4okOQLXQWuhw6Kpmb1McPE2FmOct-LXInYoXI02ZXz3EE3H96eP1xZf68urz14sPl7VVvVK1c00DvW4VMvHQtZpHGlVvO0fMA2mrqRubVioHqrXKua7khOjA9sNo1Yl4fy-7bMPMznJYE01mSX6m9MtE8ub_SvA_zPd4ZxDK0E72ReHdg0KKPzfOq5l9tjxNFDhu2cg96hYRNRT07RP0Nm4plPMKJRHLiyUW6vyeKl_JOfH4uA2COVhnDtaZv9aVjjf_HvHI__FK_QYB2Jh7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921195821</pqid></control><display><type>article</type><title>Sparse species interactions reproduce abundance correlation patterns in microbial communities</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Camacho-Mateu, José ; Lampo, Aniello ; Sireci, Matteo ; Muñoz, Miguel A ; Cuesta, José A</creator><creatorcontrib>Camacho-Mateu, José ; Lampo, Aniello ; Sireci, Matteo ; Muñoz, Miguel A ; Cuesta, José A</creatorcontrib><description>During the last decades, macroecology has identified broad-scale patterns of abundances and diversity of microbial communities and put forward some potential explanations for them. However, these advances are not paralleled by a full understanding of the dynamical processes behind them. In particular, abundance fluctuations of different species are found to be correlated, both across time and across communities in metagenomic samples. Reproducing such correlations through appropriate population models remains an open challenge. The present paper tackles this problem and points to sparse species interactions as a necessary mechanism to account for them. Specifically, we discuss several possibilities to include interactions in population models and recognize Lotka-Volterra constants as a successful ansatz. For this, we design a Bayesian inference algorithm to extract sets of interaction constants able to reproduce empirical probability distributions of pairwise correlations for diverse biomes. Importantly, the inferred models still reproduce well-known single-species macroecological patterns concerning abundance fluctuations across both species and communities. Endorsed by the agreement with the empirically observed phenomenology, our analyses provide insights into the properties of the networks of microbial interactions, revealing that sparsity is a crucial feature.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2309575121</identifier><identifier>PMID: 38266051</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Abundance ; Algorithms ; Bayes Theorem ; Bayesian analysis ; Biological Sciences ; Correlation ; Empirical analysis ; Fluctuations ; Mathematical models ; Metagenome ; Metagenomics ; Microbial activity ; Microbiomes ; Microbiota ; Microorganisms ; Phenomenology ; Physical Sciences ; Species ; Statistical inference</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-01, Vol.121 (5), p.e2309575121</ispartof><rights>Copyright National Academy of Sciences Jan 30, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-dd44078531eaeb658efaf37c6daeeba8c8a6f4523d035c3dd6523a11d0c7bfc3</citedby><cites>FETCH-LOGICAL-c3733-dd44078531eaeb658efaf37c6daeeba8c8a6f4523d035c3dd6523a11d0c7bfc3</cites><orcidid>0000-0003-2814-8763 ; 0000-0003-4826-9896 ; 0000-0001-9890-9367 ; 0000-0003-0152-9080 ; 0000-0001-8572-2712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853627/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853627/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38266051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Camacho-Mateu, José</creatorcontrib><creatorcontrib>Lampo, Aniello</creatorcontrib><creatorcontrib>Sireci, Matteo</creatorcontrib><creatorcontrib>Muñoz, Miguel A</creatorcontrib><creatorcontrib>Cuesta, José A</creatorcontrib><title>Sparse species interactions reproduce abundance correlation patterns in microbial communities</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>During the last decades, macroecology has identified broad-scale patterns of abundances and diversity of microbial communities and put forward some potential explanations for them. However, these advances are not paralleled by a full understanding of the dynamical processes behind them. In particular, abundance fluctuations of different species are found to be correlated, both across time and across communities in metagenomic samples. Reproducing such correlations through appropriate population models remains an open challenge. The present paper tackles this problem and points to sparse species interactions as a necessary mechanism to account for them. Specifically, we discuss several possibilities to include interactions in population models and recognize Lotka-Volterra constants as a successful ansatz. For this, we design a Bayesian inference algorithm to extract sets of interaction constants able to reproduce empirical probability distributions of pairwise correlations for diverse biomes. Importantly, the inferred models still reproduce well-known single-species macroecological patterns concerning abundance fluctuations across both species and communities. Endorsed by the agreement with the empirically observed phenomenology, our analyses provide insights into the properties of the networks of microbial interactions, revealing that sparsity is a crucial feature.</description><subject>Abundance</subject><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biological Sciences</subject><subject>Correlation</subject><subject>Empirical analysis</subject><subject>Fluctuations</subject><subject>Mathematical models</subject><subject>Metagenome</subject><subject>Metagenomics</subject><subject>Microbial activity</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Phenomenology</subject><subject>Physical Sciences</subject><subject>Species</subject><subject>Statistical inference</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1rFjEQxoMo9m3r2ZssePGy7UyyH3lPIsUvKPRgryXMJrOaspusyW7B_968tFbtaQbmN898PEK8RjhD6NX5EiifSQX7tm9R4jOxQ9hj3TV7eC52ALKvdSObI3Gc8y1A4TS8FEdKy66DFnfi5ttCKXOVF7aec-XDyons6mPIVeIlRbdZrmjYgqNQMhtT4okOQLXQWuhw6Kpmb1McPE2FmOct-LXInYoXI02ZXz3EE3H96eP1xZf68urz14sPl7VVvVK1c00DvW4VMvHQtZpHGlVvO0fMA2mrqRubVioHqrXKua7khOjA9sNo1Yl4fy-7bMPMznJYE01mSX6m9MtE8ub_SvA_zPd4ZxDK0E72ReHdg0KKPzfOq5l9tjxNFDhu2cg96hYRNRT07RP0Nm4plPMKJRHLiyUW6vyeKl_JOfH4uA2COVhnDtaZv9aVjjf_HvHI__FK_QYB2Jh7</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>Camacho-Mateu, José</creator><creator>Lampo, Aniello</creator><creator>Sireci, Matteo</creator><creator>Muñoz, Miguel A</creator><creator>Cuesta, José A</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2814-8763</orcidid><orcidid>https://orcid.org/0000-0003-4826-9896</orcidid><orcidid>https://orcid.org/0000-0001-9890-9367</orcidid><orcidid>https://orcid.org/0000-0003-0152-9080</orcidid><orcidid>https://orcid.org/0000-0001-8572-2712</orcidid></search><sort><creationdate>20240130</creationdate><title>Sparse species interactions reproduce abundance correlation patterns in microbial communities</title><author>Camacho-Mateu, José ; Lampo, Aniello ; Sireci, Matteo ; Muñoz, Miguel A ; Cuesta, José A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-dd44078531eaeb658efaf37c6daeeba8c8a6f4523d035c3dd6523a11d0c7bfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abundance</topic><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biological Sciences</topic><topic>Correlation</topic><topic>Empirical analysis</topic><topic>Fluctuations</topic><topic>Mathematical models</topic><topic>Metagenome</topic><topic>Metagenomics</topic><topic>Microbial activity</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Phenomenology</topic><topic>Physical Sciences</topic><topic>Species</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camacho-Mateu, José</creatorcontrib><creatorcontrib>Lampo, Aniello</creatorcontrib><creatorcontrib>Sireci, Matteo</creatorcontrib><creatorcontrib>Muñoz, Miguel A</creatorcontrib><creatorcontrib>Cuesta, José A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camacho-Mateu, José</au><au>Lampo, Aniello</au><au>Sireci, Matteo</au><au>Muñoz, Miguel A</au><au>Cuesta, José A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse species interactions reproduce abundance correlation patterns in microbial communities</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-01-30</date><risdate>2024</risdate><volume>121</volume><issue>5</issue><spage>e2309575121</spage><pages>e2309575121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>During the last decades, macroecology has identified broad-scale patterns of abundances and diversity of microbial communities and put forward some potential explanations for them. However, these advances are not paralleled by a full understanding of the dynamical processes behind them. In particular, abundance fluctuations of different species are found to be correlated, both across time and across communities in metagenomic samples. Reproducing such correlations through appropriate population models remains an open challenge. The present paper tackles this problem and points to sparse species interactions as a necessary mechanism to account for them. Specifically, we discuss several possibilities to include interactions in population models and recognize Lotka-Volterra constants as a successful ansatz. For this, we design a Bayesian inference algorithm to extract sets of interaction constants able to reproduce empirical probability distributions of pairwise correlations for diverse biomes. Importantly, the inferred models still reproduce well-known single-species macroecological patterns concerning abundance fluctuations across both species and communities. Endorsed by the agreement with the empirically observed phenomenology, our analyses provide insights into the properties of the networks of microbial interactions, revealing that sparsity is a crucial feature.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38266051</pmid><doi>10.1073/pnas.2309575121</doi><orcidid>https://orcid.org/0000-0003-2814-8763</orcidid><orcidid>https://orcid.org/0000-0003-4826-9896</orcidid><orcidid>https://orcid.org/0000-0001-9890-9367</orcidid><orcidid>https://orcid.org/0000-0003-0152-9080</orcidid><orcidid>https://orcid.org/0000-0001-8572-2712</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-01, Vol.121 (5), p.e2309575121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10853627 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Abundance Algorithms Bayes Theorem Bayesian analysis Biological Sciences Correlation Empirical analysis Fluctuations Mathematical models Metagenome Metagenomics Microbial activity Microbiomes Microbiota Microorganisms Phenomenology Physical Sciences Species Statistical inference |
title | Sparse species interactions reproduce abundance correlation patterns in microbial communities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20species%20interactions%20reproduce%20abundance%20correlation%20patterns%20in%20microbial%20communities&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Camacho-Mateu,%20Jos%C3%A9&rft.date=2024-01-30&rft.volume=121&rft.issue=5&rft.spage=e2309575121&rft.pages=e2309575121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2309575121&rft_dat=%3Cproquest_pubme%3E2921195821%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921195821&rft_id=info:pmid/38266051&rfr_iscdi=true |