ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model
Through evolution, nature has presented a set of remarkable protein materials, including elastins, silks, keratins and collagens with superior mechanical performances that play crucial roles in mechanobiology. However, going beyond natural designs to discover proteins that meet specified mechanical...
Gespeichert in:
Veröffentlicht in: | Science advances 2024-02, Vol.10 (6), p.eadl4000-eadl4000 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eadl4000 |
---|---|
container_issue | 6 |
container_start_page | eadl4000 |
container_title | Science advances |
container_volume | 10 |
creator | Ni, Bo Kaplan, David L Buehler, Markus J |
description | Through evolution, nature has presented a set of remarkable protein materials, including elastins, silks, keratins and collagens with superior mechanical performances that play crucial roles in mechanobiology. However, going beyond natural designs to discover proteins that meet specified mechanical properties remains challenging. Here, we report a generative model that predicts protein designs to meet complex nonlinear mechanical property-design objectives. Our model leverages deep knowledge on protein sequences from a pretrained protein language model and maps mechanical unfolding responses to create proteins. Via full-atom molecular simulations for direct validation, we demonstrate that the designed proteins are de novo, and fulfill the targeted mechanical properties, including unfolding energy and mechanical strength, as well as the detailed unfolding force-separation curves. Our model offers rapid pathways to explore the enormous mechanobiological protein sequence space unconstrained by biological synthesis, using mechanical features as the target to enable the discovery of protein materials with superior mechanical properties. |
doi_str_mv | 10.1126/sciadv.adl4000 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10849601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923914889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-ac897039b029968ca065652f386d2a621c381e39f925f0c6b0b0be8d5edfb51f3</originalsourceid><addsrcrecordid>eNpVkc9vFCEUxydGY5vaq0dDPHmZLT9mWPBiTNPWJk286Jkw8JhiZh4rzGzSq3-5bHZtajjwgA9f3pdv07xndMMYl1fFRev3G-unjlL6qjnnYtu3vO_U6xf1WXNZyq8KsE7Knum3zZlQgndyK8-bP7cpO7gD_Exu0LdLagE98UAw7RPZ5bRARDICQrZLTEgGW8CTWmDCKSLYTGZwjxajsxNZMaTJRxxJhrJLWKCQtRzWlkwWx9WOQHwMoW5WjTl5mN41b4KdClye5ovm5-3Nj-tv7cP3u_vrrw-tE1uxtNYpvaVCD5RrLZWzVPay50Eo6bmVnDmhGAgdNO8DdXKgdYDyPfgw9CyIi-bLUXe3DjN4B7hkO5ldjrPNTybZaP4_wfhoxrQ3jKpOS8qqwsejQipLNPX3l-rcJURwi-Fd7a7XFfp0eian3yuUxcyxOJiqfUhrMVxzoVmn1AHdHFGXUykZwnMzjJpDwuaYsDklXC98eGnhGf-Xp_gLGg6mUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923914889</pqid></control><display><type>article</type><title>ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Ni, Bo ; Kaplan, David L ; Buehler, Markus J</creator><creatorcontrib>Ni, Bo ; Kaplan, David L ; Buehler, Markus J ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Through evolution, nature has presented a set of remarkable protein materials, including elastins, silks, keratins and collagens with superior mechanical performances that play crucial roles in mechanobiology. However, going beyond natural designs to discover proteins that meet specified mechanical properties remains challenging. Here, we report a generative model that predicts protein designs to meet complex nonlinear mechanical property-design objectives. Our model leverages deep knowledge on protein sequences from a pretrained protein language model and maps mechanical unfolding responses to create proteins. Via full-atom molecular simulations for direct validation, we demonstrate that the designed proteins are de novo, and fulfill the targeted mechanical properties, including unfolding energy and mechanical strength, as well as the detailed unfolding force-separation curves. Our model offers rapid pathways to explore the enormous mechanobiological protein sequence space unconstrained by biological synthesis, using mechanical features as the target to enable the discovery of protein materials with superior mechanical properties.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adl4000</identifier><identifier>PMID: 38324676</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>Applied Sciences and Engineering ; Materials Science ; Models, Molecular ; Physical and Materials Sciences ; SciAdv r-articles ; Science & Technology - Other Topics ; Silk ; Viral Proteins</subject><ispartof>Science advances, 2024-02, Vol.10 (6), p.eadl4000-eadl4000</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c373t-ac897039b029968ca065652f386d2a621c381e39f925f0c6b0b0be8d5edfb51f3</cites><orcidid>0000-0003-2537-591X ; 0000-0002-9245-7774 ; 0000-0002-4173-9659 ; 0000000292457774 ; 000000032537591X ; 0000000241739659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849601/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849601/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38324676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2470359$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Bo</creatorcontrib><creatorcontrib>Kaplan, David L</creatorcontrib><creatorcontrib>Buehler, Markus J</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Through evolution, nature has presented a set of remarkable protein materials, including elastins, silks, keratins and collagens with superior mechanical performances that play crucial roles in mechanobiology. However, going beyond natural designs to discover proteins that meet specified mechanical properties remains challenging. Here, we report a generative model that predicts protein designs to meet complex nonlinear mechanical property-design objectives. Our model leverages deep knowledge on protein sequences from a pretrained protein language model and maps mechanical unfolding responses to create proteins. Via full-atom molecular simulations for direct validation, we demonstrate that the designed proteins are de novo, and fulfill the targeted mechanical properties, including unfolding energy and mechanical strength, as well as the detailed unfolding force-separation curves. Our model offers rapid pathways to explore the enormous mechanobiological protein sequence space unconstrained by biological synthesis, using mechanical features as the target to enable the discovery of protein materials with superior mechanical properties.</description><subject>Applied Sciences and Engineering</subject><subject>Materials Science</subject><subject>Models, Molecular</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><subject>Science & Technology - Other Topics</subject><subject>Silk</subject><subject>Viral Proteins</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc9vFCEUxydGY5vaq0dDPHmZLT9mWPBiTNPWJk286Jkw8JhiZh4rzGzSq3-5bHZtajjwgA9f3pdv07xndMMYl1fFRev3G-unjlL6qjnnYtu3vO_U6xf1WXNZyq8KsE7Knum3zZlQgndyK8-bP7cpO7gD_Exu0LdLagE98UAw7RPZ5bRARDICQrZLTEgGW8CTWmDCKSLYTGZwjxajsxNZMaTJRxxJhrJLWKCQtRzWlkwWx9WOQHwMoW5WjTl5mN41b4KdClye5ovm5-3Nj-tv7cP3u_vrrw-tE1uxtNYpvaVCD5RrLZWzVPay50Eo6bmVnDmhGAgdNO8DdXKgdYDyPfgw9CyIi-bLUXe3DjN4B7hkO5ldjrPNTybZaP4_wfhoxrQ3jKpOS8qqwsejQipLNPX3l-rcJURwi-Fd7a7XFfp0eian3yuUxcyxOJiqfUhrMVxzoVmn1AHdHFGXUykZwnMzjJpDwuaYsDklXC98eGnhGf-Xp_gLGg6mUA</recordid><startdate>20240209</startdate><enddate>20240209</enddate><creator>Ni, Bo</creator><creator>Kaplan, David L</creator><creator>Buehler, Markus J</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2537-591X</orcidid><orcidid>https://orcid.org/0000-0002-9245-7774</orcidid><orcidid>https://orcid.org/0000-0002-4173-9659</orcidid><orcidid>https://orcid.org/0000000292457774</orcidid><orcidid>https://orcid.org/000000032537591X</orcidid><orcidid>https://orcid.org/0000000241739659</orcidid></search><sort><creationdate>20240209</creationdate><title>ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model</title><author>Ni, Bo ; Kaplan, David L ; Buehler, Markus J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-ac897039b029968ca065652f386d2a621c381e39f925f0c6b0b0be8d5edfb51f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied Sciences and Engineering</topic><topic>Materials Science</topic><topic>Models, Molecular</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><topic>Science & Technology - Other Topics</topic><topic>Silk</topic><topic>Viral Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Bo</creatorcontrib><creatorcontrib>Kaplan, David L</creatorcontrib><creatorcontrib>Buehler, Markus J</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Bo</au><au>Kaplan, David L</au><au>Buehler, Markus J</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-02-09</date><risdate>2024</risdate><volume>10</volume><issue>6</issue><spage>eadl4000</spage><epage>eadl4000</epage><pages>eadl4000-eadl4000</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Through evolution, nature has presented a set of remarkable protein materials, including elastins, silks, keratins and collagens with superior mechanical performances that play crucial roles in mechanobiology. However, going beyond natural designs to discover proteins that meet specified mechanical properties remains challenging. Here, we report a generative model that predicts protein designs to meet complex nonlinear mechanical property-design objectives. Our model leverages deep knowledge on protein sequences from a pretrained protein language model and maps mechanical unfolding responses to create proteins. Via full-atom molecular simulations for direct validation, we demonstrate that the designed proteins are de novo, and fulfill the targeted mechanical properties, including unfolding energy and mechanical strength, as well as the detailed unfolding force-separation curves. Our model offers rapid pathways to explore the enormous mechanobiological protein sequence space unconstrained by biological synthesis, using mechanical features as the target to enable the discovery of protein materials with superior mechanical properties.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>38324676</pmid><doi>10.1126/sciadv.adl4000</doi><orcidid>https://orcid.org/0000-0003-2537-591X</orcidid><orcidid>https://orcid.org/0000-0002-9245-7774</orcidid><orcidid>https://orcid.org/0000-0002-4173-9659</orcidid><orcidid>https://orcid.org/0000000292457774</orcidid><orcidid>https://orcid.org/000000032537591X</orcidid><orcidid>https://orcid.org/0000000241739659</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2024-02, Vol.10 (6), p.eadl4000-eadl4000 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10849601 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Applied Sciences and Engineering Materials Science Models, Molecular Physical and Materials Sciences SciAdv r-articles Science & Technology - Other Topics Silk Viral Proteins |
title | ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ForceGen:%20End-to-end%20de%20novo%20protein%20generation%20based%20on%20nonlinear%20mechanical%20unfolding%20responses%20using%20a%20language%20diffusion%20model&rft.jtitle=Science%20advances&rft.au=Ni,%20Bo&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2024-02-09&rft.volume=10&rft.issue=6&rft.spage=eadl4000&rft.epage=eadl4000&rft.pages=eadl4000-eadl4000&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adl4000&rft_dat=%3Cproquest_pubme%3E2923914889%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923914889&rft_id=info:pmid/38324676&rfr_iscdi=true |