ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model

Through evolution, nature has presented a set of remarkable protein materials, including elastins, silks, keratins and collagens with superior mechanical performances that play crucial roles in mechanobiology. However, going beyond natural designs to discover proteins that meet specified mechanical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2024-02, Vol.10 (6), p.eadl4000-eadl4000
Hauptverfasser: Ni, Bo, Kaplan, David L, Buehler, Markus J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eadl4000
container_issue 6
container_start_page eadl4000
container_title Science advances
container_volume 10
creator Ni, Bo
Kaplan, David L
Buehler, Markus J
description Through evolution, nature has presented a set of remarkable protein materials, including elastins, silks, keratins and collagens with superior mechanical performances that play crucial roles in mechanobiology. However, going beyond natural designs to discover proteins that meet specified mechanical properties remains challenging. Here, we report a generative model that predicts protein designs to meet complex nonlinear mechanical property-design objectives. Our model leverages deep knowledge on protein sequences from a pretrained protein language model and maps mechanical unfolding responses to create proteins. Via full-atom molecular simulations for direct validation, we demonstrate that the designed proteins are de novo, and fulfill the targeted mechanical properties, including unfolding energy and mechanical strength, as well as the detailed unfolding force-separation curves. Our model offers rapid pathways to explore the enormous mechanobiological protein sequence space unconstrained by biological synthesis, using mechanical features as the target to enable the discovery of protein materials with superior mechanical properties.
doi_str_mv 10.1126/sciadv.adl4000
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10849601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923914889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-ac897039b029968ca065652f386d2a621c381e39f925f0c6b0b0be8d5edfb51f3</originalsourceid><addsrcrecordid>eNpVkc9vFCEUxydGY5vaq0dDPHmZLT9mWPBiTNPWJk286Jkw8JhiZh4rzGzSq3-5bHZtajjwgA9f3pdv07xndMMYl1fFRev3G-unjlL6qjnnYtu3vO_U6xf1WXNZyq8KsE7Knum3zZlQgndyK8-bP7cpO7gD_Exu0LdLagE98UAw7RPZ5bRARDICQrZLTEgGW8CTWmDCKSLYTGZwjxajsxNZMaTJRxxJhrJLWKCQtRzWlkwWx9WOQHwMoW5WjTl5mN41b4KdClye5ovm5-3Nj-tv7cP3u_vrrw-tE1uxtNYpvaVCD5RrLZWzVPay50Eo6bmVnDmhGAgdNO8DdXKgdYDyPfgw9CyIi-bLUXe3DjN4B7hkO5ldjrPNTybZaP4_wfhoxrQ3jKpOS8qqwsejQipLNPX3l-rcJURwi-Fd7a7XFfp0eian3yuUxcyxOJiqfUhrMVxzoVmn1AHdHFGXUykZwnMzjJpDwuaYsDklXC98eGnhGf-Xp_gLGg6mUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923914889</pqid></control><display><type>article</type><title>ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Ni, Bo ; Kaplan, David L ; Buehler, Markus J</creator><creatorcontrib>Ni, Bo ; Kaplan, David L ; Buehler, Markus J ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Through evolution, nature has presented a set of remarkable protein materials, including elastins, silks, keratins and collagens with superior mechanical performances that play crucial roles in mechanobiology. However, going beyond natural designs to discover proteins that meet specified mechanical properties remains challenging. Here, we report a generative model that predicts protein designs to meet complex nonlinear mechanical property-design objectives. Our model leverages deep knowledge on protein sequences from a pretrained protein language model and maps mechanical unfolding responses to create proteins. Via full-atom molecular simulations for direct validation, we demonstrate that the designed proteins are de novo, and fulfill the targeted mechanical properties, including unfolding energy and mechanical strength, as well as the detailed unfolding force-separation curves. Our model offers rapid pathways to explore the enormous mechanobiological protein sequence space unconstrained by biological synthesis, using mechanical features as the target to enable the discovery of protein materials with superior mechanical properties.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adl4000</identifier><identifier>PMID: 38324676</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>Applied Sciences and Engineering ; Materials Science ; Models, Molecular ; Physical and Materials Sciences ; SciAdv r-articles ; Science &amp; Technology - Other Topics ; Silk ; Viral Proteins</subject><ispartof>Science advances, 2024-02, Vol.10 (6), p.eadl4000-eadl4000</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c373t-ac897039b029968ca065652f386d2a621c381e39f925f0c6b0b0be8d5edfb51f3</cites><orcidid>0000-0003-2537-591X ; 0000-0002-9245-7774 ; 0000-0002-4173-9659 ; 0000000292457774 ; 000000032537591X ; 0000000241739659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849601/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849601/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38324676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2470359$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Bo</creatorcontrib><creatorcontrib>Kaplan, David L</creatorcontrib><creatorcontrib>Buehler, Markus J</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Through evolution, nature has presented a set of remarkable protein materials, including elastins, silks, keratins and collagens with superior mechanical performances that play crucial roles in mechanobiology. However, going beyond natural designs to discover proteins that meet specified mechanical properties remains challenging. Here, we report a generative model that predicts protein designs to meet complex nonlinear mechanical property-design objectives. Our model leverages deep knowledge on protein sequences from a pretrained protein language model and maps mechanical unfolding responses to create proteins. Via full-atom molecular simulations for direct validation, we demonstrate that the designed proteins are de novo, and fulfill the targeted mechanical properties, including unfolding energy and mechanical strength, as well as the detailed unfolding force-separation curves. Our model offers rapid pathways to explore the enormous mechanobiological protein sequence space unconstrained by biological synthesis, using mechanical features as the target to enable the discovery of protein materials with superior mechanical properties.</description><subject>Applied Sciences and Engineering</subject><subject>Materials Science</subject><subject>Models, Molecular</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Silk</subject><subject>Viral Proteins</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc9vFCEUxydGY5vaq0dDPHmZLT9mWPBiTNPWJk286Jkw8JhiZh4rzGzSq3-5bHZtajjwgA9f3pdv07xndMMYl1fFRev3G-unjlL6qjnnYtu3vO_U6xf1WXNZyq8KsE7Knum3zZlQgndyK8-bP7cpO7gD_Exu0LdLagE98UAw7RPZ5bRARDICQrZLTEgGW8CTWmDCKSLYTGZwjxajsxNZMaTJRxxJhrJLWKCQtRzWlkwWx9WOQHwMoW5WjTl5mN41b4KdClye5ovm5-3Nj-tv7cP3u_vrrw-tE1uxtNYpvaVCD5RrLZWzVPay50Eo6bmVnDmhGAgdNO8DdXKgdYDyPfgw9CyIi-bLUXe3DjN4B7hkO5ldjrPNTybZaP4_wfhoxrQ3jKpOS8qqwsejQipLNPX3l-rcJURwi-Fd7a7XFfp0eian3yuUxcyxOJiqfUhrMVxzoVmn1AHdHFGXUykZwnMzjJpDwuaYsDklXC98eGnhGf-Xp_gLGg6mUA</recordid><startdate>20240209</startdate><enddate>20240209</enddate><creator>Ni, Bo</creator><creator>Kaplan, David L</creator><creator>Buehler, Markus J</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2537-591X</orcidid><orcidid>https://orcid.org/0000-0002-9245-7774</orcidid><orcidid>https://orcid.org/0000-0002-4173-9659</orcidid><orcidid>https://orcid.org/0000000292457774</orcidid><orcidid>https://orcid.org/000000032537591X</orcidid><orcidid>https://orcid.org/0000000241739659</orcidid></search><sort><creationdate>20240209</creationdate><title>ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model</title><author>Ni, Bo ; Kaplan, David L ; Buehler, Markus J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-ac897039b029968ca065652f386d2a621c381e39f925f0c6b0b0be8d5edfb51f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied Sciences and Engineering</topic><topic>Materials Science</topic><topic>Models, Molecular</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Silk</topic><topic>Viral Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Bo</creatorcontrib><creatorcontrib>Kaplan, David L</creatorcontrib><creatorcontrib>Buehler, Markus J</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Bo</au><au>Kaplan, David L</au><au>Buehler, Markus J</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-02-09</date><risdate>2024</risdate><volume>10</volume><issue>6</issue><spage>eadl4000</spage><epage>eadl4000</epage><pages>eadl4000-eadl4000</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Through evolution, nature has presented a set of remarkable protein materials, including elastins, silks, keratins and collagens with superior mechanical performances that play crucial roles in mechanobiology. However, going beyond natural designs to discover proteins that meet specified mechanical properties remains challenging. Here, we report a generative model that predicts protein designs to meet complex nonlinear mechanical property-design objectives. Our model leverages deep knowledge on protein sequences from a pretrained protein language model and maps mechanical unfolding responses to create proteins. Via full-atom molecular simulations for direct validation, we demonstrate that the designed proteins are de novo, and fulfill the targeted mechanical properties, including unfolding energy and mechanical strength, as well as the detailed unfolding force-separation curves. Our model offers rapid pathways to explore the enormous mechanobiological protein sequence space unconstrained by biological synthesis, using mechanical features as the target to enable the discovery of protein materials with superior mechanical properties.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>38324676</pmid><doi>10.1126/sciadv.adl4000</doi><orcidid>https://orcid.org/0000-0003-2537-591X</orcidid><orcidid>https://orcid.org/0000-0002-9245-7774</orcidid><orcidid>https://orcid.org/0000-0002-4173-9659</orcidid><orcidid>https://orcid.org/0000000292457774</orcidid><orcidid>https://orcid.org/000000032537591X</orcidid><orcidid>https://orcid.org/0000000241739659</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2024-02, Vol.10 (6), p.eadl4000-eadl4000
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10849601
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Applied Sciences and Engineering
Materials Science
Models, Molecular
Physical and Materials Sciences
SciAdv r-articles
Science & Technology - Other Topics
Silk
Viral Proteins
title ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ForceGen:%20End-to-end%20de%20novo%20protein%20generation%20based%20on%20nonlinear%20mechanical%20unfolding%20responses%20using%20a%20language%20diffusion%20model&rft.jtitle=Science%20advances&rft.au=Ni,%20Bo&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2024-02-09&rft.volume=10&rft.issue=6&rft.spage=eadl4000&rft.epage=eadl4000&rft.pages=eadl4000-eadl4000&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adl4000&rft_dat=%3Cproquest_pubme%3E2923914889%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923914889&rft_id=info:pmid/38324676&rfr_iscdi=true