Massive contractions of myotonic dystrophy type 2-associated CCTG tetranucleotide repeats occur via double-strand break repair with distinct requirements for DNA helicases

Abstract Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:G3 : genes - genomes - genetics 2024-02, Vol.14 (2)
Hauptverfasser: Papp, David, Hernandez, Luis A, Mai, Theresa A, Haanen, Terrance J, O’Donnell, Meghan A, Duran, Ariel T, Hernandez, Sophia M, Narvanto, Jenni E, Arguello, Berenice, Onwukwe, Marvin O, Mirkin, Sergei M, Kim, Jane C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title G3 : genes - genomes - genetics
container_volume 14
creator Papp, David
Hernandez, Luis A
Mai, Theresa A
Haanen, Terrance J
O’Donnell, Meghan A
Duran, Ariel T
Hernandez, Sophia M
Narvanto, Jenni E
Arguello, Berenice
Onwukwe, Marvin O
Mirkin, Sergei M
Kim, Jane C
description Abstract Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are involved in these massive contractions, indicating a mechanism that uses homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a short-track control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.
doi_str_mv 10.1093/g3journal/jkad257
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10849350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/g3journal/jkad257</oup_id><sourcerecordid>2889239894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-f3a82d62f0c3f5c20849e654fb98bdad6138e42be6038c4e62da4bdd049e30753</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEolXpA7BBXrIg1LETj7NC1QAFqT-bsrYc-6bjaWKn_hmUZ-IlcTTDqOzqja3r75x7dU9RvK_w5wq39OKBbl3yVg4X20epSbN6VZySiuGy4pS9fvY-Kc5D2OJ8moaxmr0tTuiqbTBvyWnx50aGYHaAlLPRSxWNswG5Ho2zi84ahfQconfTZkZxngCRMgucMjKCRuv1_RWKkIU2qQFcNBqQhwlkzCZKJY92RiLtUjdAGRZOo86DfFwoaTz6beIGaROisSrm4lMyHkawWd87j77eXqINDEbJAOFd8aaXQ4Dzw31W_Pr-7X79o7y-u_q5vrwuVU1Xseyp5EQz0mNF-0YRzOsWWFP3Xcs7LTWrKIeadMAw5aoGRrSsO61xxiheNfSs-LL3nVI3glawbGYQkzej9LNw0oj_f6zZiAe3E9XSijY4O3w8OHj3lCBEMZqgYBikBZeCIDwvn7a8rTNa7VHlXQge-mOfCoslaHEMWhyCzpoPzwc8Kv7FmoFPe8Cl6QV-fwFhrr0V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889239894</pqid></control><display><type>article</type><title>Massive contractions of myotonic dystrophy type 2-associated CCTG tetranucleotide repeats occur via double-strand break repair with distinct requirements for DNA helicases</title><source>MEDLINE</source><source>EZB Free E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Papp, David ; Hernandez, Luis A ; Mai, Theresa A ; Haanen, Terrance J ; O’Donnell, Meghan A ; Duran, Ariel T ; Hernandez, Sophia M ; Narvanto, Jenni E ; Arguello, Berenice ; Onwukwe, Marvin O ; Mirkin, Sergei M ; Kim, Jane C</creator><contributor>Rhind, N</contributor><creatorcontrib>Papp, David ; Hernandez, Luis A ; Mai, Theresa A ; Haanen, Terrance J ; O’Donnell, Meghan A ; Duran, Ariel T ; Hernandez, Sophia M ; Narvanto, Jenni E ; Arguello, Berenice ; Onwukwe, Marvin O ; Mirkin, Sergei M ; Kim, Jane C ; Rhind, N</creatorcontrib><description>Abstract Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are involved in these massive contractions, indicating a mechanism that uses homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a short-track control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.</description><identifier>ISSN: 2160-1836</identifier><identifier>EISSN: 2160-1836</identifier><identifier>DOI: 10.1093/g3journal/jkad257</identifier><identifier>PMID: 37950892</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Investigation</subject><ispartof>G3 : genes - genomes - genetics, 2024-02, Vol.14 (2)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of The Genetics Society of America. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of The Genetics Society of America.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-f3a82d62f0c3f5c20849e654fb98bdad6138e42be6038c4e62da4bdd049e30753</citedby><cites>FETCH-LOGICAL-c437t-f3a82d62f0c3f5c20849e654fb98bdad6138e42be6038c4e62da4bdd049e30753</cites><orcidid>0000-0001-9963-8562 ; 0000-0003-4576-7582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849350/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849350/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37950892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rhind, N</contributor><creatorcontrib>Papp, David</creatorcontrib><creatorcontrib>Hernandez, Luis A</creatorcontrib><creatorcontrib>Mai, Theresa A</creatorcontrib><creatorcontrib>Haanen, Terrance J</creatorcontrib><creatorcontrib>O’Donnell, Meghan A</creatorcontrib><creatorcontrib>Duran, Ariel T</creatorcontrib><creatorcontrib>Hernandez, Sophia M</creatorcontrib><creatorcontrib>Narvanto, Jenni E</creatorcontrib><creatorcontrib>Arguello, Berenice</creatorcontrib><creatorcontrib>Onwukwe, Marvin O</creatorcontrib><creatorcontrib>Mirkin, Sergei M</creatorcontrib><creatorcontrib>Kim, Jane C</creatorcontrib><title>Massive contractions of myotonic dystrophy type 2-associated CCTG tetranucleotide repeats occur via double-strand break repair with distinct requirements for DNA helicases</title><title>G3 : genes - genomes - genetics</title><addtitle>G3 (Bethesda)</addtitle><description>Abstract Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are involved in these massive contractions, indicating a mechanism that uses homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a short-track control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.</description><subject>Investigation</subject><issn>2160-1836</issn><issn>2160-1836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhSMEolXpA7BBXrIg1LETj7NC1QAFqT-bsrYc-6bjaWKn_hmUZ-IlcTTDqOzqja3r75x7dU9RvK_w5wq39OKBbl3yVg4X20epSbN6VZySiuGy4pS9fvY-Kc5D2OJ8moaxmr0tTuiqbTBvyWnx50aGYHaAlLPRSxWNswG5Ho2zi84ahfQconfTZkZxngCRMgucMjKCRuv1_RWKkIU2qQFcNBqQhwlkzCZKJY92RiLtUjdAGRZOo86DfFwoaTz6beIGaROisSrm4lMyHkawWd87j77eXqINDEbJAOFd8aaXQ4Dzw31W_Pr-7X79o7y-u_q5vrwuVU1Xseyp5EQz0mNF-0YRzOsWWFP3Xcs7LTWrKIeadMAw5aoGRrSsO61xxiheNfSs-LL3nVI3glawbGYQkzej9LNw0oj_f6zZiAe3E9XSijY4O3w8OHj3lCBEMZqgYBikBZeCIDwvn7a8rTNa7VHlXQge-mOfCoslaHEMWhyCzpoPzwc8Kv7FmoFPe8Cl6QV-fwFhrr0V</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Papp, David</creator><creator>Hernandez, Luis A</creator><creator>Mai, Theresa A</creator><creator>Haanen, Terrance J</creator><creator>O’Donnell, Meghan A</creator><creator>Duran, Ariel T</creator><creator>Hernandez, Sophia M</creator><creator>Narvanto, Jenni E</creator><creator>Arguello, Berenice</creator><creator>Onwukwe, Marvin O</creator><creator>Mirkin, Sergei M</creator><creator>Kim, Jane C</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9963-8562</orcidid><orcidid>https://orcid.org/0000-0003-4576-7582</orcidid></search><sort><creationdate>20240207</creationdate><title>Massive contractions of myotonic dystrophy type 2-associated CCTG tetranucleotide repeats occur via double-strand break repair with distinct requirements for DNA helicases</title><author>Papp, David ; Hernandez, Luis A ; Mai, Theresa A ; Haanen, Terrance J ; O’Donnell, Meghan A ; Duran, Ariel T ; Hernandez, Sophia M ; Narvanto, Jenni E ; Arguello, Berenice ; Onwukwe, Marvin O ; Mirkin, Sergei M ; Kim, Jane C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-f3a82d62f0c3f5c20849e654fb98bdad6138e42be6038c4e62da4bdd049e30753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Investigation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papp, David</creatorcontrib><creatorcontrib>Hernandez, Luis A</creatorcontrib><creatorcontrib>Mai, Theresa A</creatorcontrib><creatorcontrib>Haanen, Terrance J</creatorcontrib><creatorcontrib>O’Donnell, Meghan A</creatorcontrib><creatorcontrib>Duran, Ariel T</creatorcontrib><creatorcontrib>Hernandez, Sophia M</creatorcontrib><creatorcontrib>Narvanto, Jenni E</creatorcontrib><creatorcontrib>Arguello, Berenice</creatorcontrib><creatorcontrib>Onwukwe, Marvin O</creatorcontrib><creatorcontrib>Mirkin, Sergei M</creatorcontrib><creatorcontrib>Kim, Jane C</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>G3 : genes - genomes - genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papp, David</au><au>Hernandez, Luis A</au><au>Mai, Theresa A</au><au>Haanen, Terrance J</au><au>O’Donnell, Meghan A</au><au>Duran, Ariel T</au><au>Hernandez, Sophia M</au><au>Narvanto, Jenni E</au><au>Arguello, Berenice</au><au>Onwukwe, Marvin O</au><au>Mirkin, Sergei M</au><au>Kim, Jane C</au><au>Rhind, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive contractions of myotonic dystrophy type 2-associated CCTG tetranucleotide repeats occur via double-strand break repair with distinct requirements for DNA helicases</atitle><jtitle>G3 : genes - genomes - genetics</jtitle><addtitle>G3 (Bethesda)</addtitle><date>2024-02-07</date><risdate>2024</risdate><volume>14</volume><issue>2</issue><issn>2160-1836</issn><eissn>2160-1836</eissn><abstract>Abstract Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are involved in these massive contractions, indicating a mechanism that uses homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a short-track control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>37950892</pmid><doi>10.1093/g3journal/jkad257</doi><orcidid>https://orcid.org/0000-0001-9963-8562</orcidid><orcidid>https://orcid.org/0000-0003-4576-7582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-1836
ispartof G3 : genes - genomes - genetics, 2024-02, Vol.14 (2)
issn 2160-1836
2160-1836
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10849350
source MEDLINE; EZB Free E-Journals; Oxford Journals Open Access Collection; PubMed Central
subjects Investigation
title Massive contractions of myotonic dystrophy type 2-associated CCTG tetranucleotide repeats occur via double-strand break repair with distinct requirements for DNA helicases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T00%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20contractions%20of%20myotonic%20dystrophy%20type%202-associated%20CCTG%20tetranucleotide%20repeats%20occur%20via%20double-strand%20break%20repair%20with%20distinct%20requirements%20for%20DNA%20helicases&rft.jtitle=G3%20:%20genes%20-%20genomes%20-%20genetics&rft.au=Papp,%20David&rft.date=2024-02-07&rft.volume=14&rft.issue=2&rft.issn=2160-1836&rft.eissn=2160-1836&rft_id=info:doi/10.1093/g3journal/jkad257&rft_dat=%3Cproquest_pubme%3E2889239894%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889239894&rft_id=info:pmid/37950892&rft_oup_id=10.1093/g3journal/jkad257&rfr_iscdi=true