Exciton dynamics from the mapping approach to surface hopping: comparison with Förster and Redfield theories
We compare the recently introduced multi-state mapping approach to surface hopping (MASH) with the Förster and Redfield theories of excitation energy transfer. Whereas Förster theory relies on weak coupling between chromophores, and Redfield theory assumes the electronic excitations to be weakly cou...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-02, Vol.26 (6), p.4929-4938 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4938 |
---|---|
container_issue | 6 |
container_start_page | 4929 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 26 |
creator | Runeson, Johan E Fay, Thomas P Manolopoulos, David E |
description | We compare the recently introduced multi-state mapping approach to surface hopping (MASH) with the Förster and Redfield theories of excitation energy transfer. Whereas Förster theory relies on weak coupling between chromophores, and Redfield theory assumes the electronic excitations to be weakly coupled to fast chromophore vibrations, MASH is free from any perturbative or Markovian approximations. We illustrate this with an example application to the rate of energy transfer in a Frenkel-exciton dimer, showing that MASH interpolates correctly between the opposing regimes in which the Förster and Redfield results are reliable. We then compare the three methods for a realistic model of the Fenna-Matthews-Olson complex with a structured vibrational spectral density and static disorder in the excitation energies. In this case there are no exact results for comparison so we use MASH to assess the validity of Förster and Redfield theories. We find that Förster theory is the more accurate of the two on the picosecond timescale, as has been shown previously for a simpler model of this particular light-harvesting complex. We also explore various ways to sample the initial electronic state in MASH and find that they all give very similar results for exciton dynamics.
The mapping approach to surface hopping captures the Förster and Redfield limits of excitation energy transfer, and everything in between. |
doi_str_mv | 10.1039/d3cp05926j |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10849040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922966399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-c04f0b9cb92096cae3b0005fff458fcd9237df578dd50715938501731d19528c3</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEoqWwYQ-yYIOQBvyIE5sNQkPLQ5VACNaW59puPErs1HaA_jH-AH8Mt1OGx-paOp-Or89x09wn-BnBTD43DGbMJe22N5pD0nZsJbFob-7PfXfQ3Ml5izEmnLDbzQETtONYssNmOv4OvsSAzEXQk4eMXIoTKoNFk55nH85QHSlqGFCJKC_JabBoiFfaCwRxmnXyuTp882VAJz9_pFxsQjoY9Mka5-1oLu1i8jbfbW45PWZ773oeNV9Ojj-v365OP7x5t351uoJW9mUFuHV4I2EjKZYdaMs2dXfunGu5cGAkZb1xvBfGcNwTLpngmPSMGCI5FcCOmpc733nZTNaADSXpUc3JTzpdqKi9-lcJflBn8asiNTiJW1wdHu0cYi5e5ZqRhQFiCBaKorTm17UVenJ9TYrni81FTT6DHUcdbFyyopKIupEQpKKP_0O3cUmhhlApSmXXMSkr9XRHQYo5J-v2KxOsLrtWr9n641XX7yv88O9H7tHf5VbgwQ5IGfbqn8_CfgE19a_H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922966399</pqid></control><display><type>article</type><title>Exciton dynamics from the mapping approach to surface hopping: comparison with Förster and Redfield theories</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Runeson, Johan E ; Fay, Thomas P ; Manolopoulos, David E</creator><creatorcontrib>Runeson, Johan E ; Fay, Thomas P ; Manolopoulos, David E</creatorcontrib><description>We compare the recently introduced multi-state mapping approach to surface hopping (MASH) with the Förster and Redfield theories of excitation energy transfer. Whereas Förster theory relies on weak coupling between chromophores, and Redfield theory assumes the electronic excitations to be weakly coupled to fast chromophore vibrations, MASH is free from any perturbative or Markovian approximations. We illustrate this with an example application to the rate of energy transfer in a Frenkel-exciton dimer, showing that MASH interpolates correctly between the opposing regimes in which the Förster and Redfield results are reliable. We then compare the three methods for a realistic model of the Fenna-Matthews-Olson complex with a structured vibrational spectral density and static disorder in the excitation energies. In this case there are no exact results for comparison so we use MASH to assess the validity of Förster and Redfield theories. We find that Förster theory is the more accurate of the two on the picosecond timescale, as has been shown previously for a simpler model of this particular light-harvesting complex. We also explore various ways to sample the initial electronic state in MASH and find that they all give very similar results for exciton dynamics.
The mapping approach to surface hopping captures the Förster and Redfield limits of excitation energy transfer, and everything in between.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp05926j</identifier><identifier>PMID: 38265093</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Chromophores ; Electron states ; Energy transfer ; Excitation ; Excitons ; Mapping</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-02, Vol.26 (6), p.4929-4938</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © the Owner Societies 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-c04f0b9cb92096cae3b0005fff458fcd9237df578dd50715938501731d19528c3</citedby><cites>FETCH-LOGICAL-c497t-c04f0b9cb92096cae3b0005fff458fcd9237df578dd50715938501731d19528c3</cites><orcidid>0000-0002-7111-0763 ; 0000-0001-8511-3650 ; 0000-0003-0625-731X ; 000000030625731X ; 0000000185113650 ; 0000000271110763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38265093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2282664$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Runeson, Johan E</creatorcontrib><creatorcontrib>Fay, Thomas P</creatorcontrib><creatorcontrib>Manolopoulos, David E</creatorcontrib><title>Exciton dynamics from the mapping approach to surface hopping: comparison with Förster and Redfield theories</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We compare the recently introduced multi-state mapping approach to surface hopping (MASH) with the Förster and Redfield theories of excitation energy transfer. Whereas Förster theory relies on weak coupling between chromophores, and Redfield theory assumes the electronic excitations to be weakly coupled to fast chromophore vibrations, MASH is free from any perturbative or Markovian approximations. We illustrate this with an example application to the rate of energy transfer in a Frenkel-exciton dimer, showing that MASH interpolates correctly between the opposing regimes in which the Förster and Redfield results are reliable. We then compare the three methods for a realistic model of the Fenna-Matthews-Olson complex with a structured vibrational spectral density and static disorder in the excitation energies. In this case there are no exact results for comparison so we use MASH to assess the validity of Förster and Redfield theories. We find that Förster theory is the more accurate of the two on the picosecond timescale, as has been shown previously for a simpler model of this particular light-harvesting complex. We also explore various ways to sample the initial electronic state in MASH and find that they all give very similar results for exciton dynamics.
The mapping approach to surface hopping captures the Förster and Redfield limits of excitation energy transfer, and everything in between.</description><subject>Chemistry</subject><subject>Chromophores</subject><subject>Electron states</subject><subject>Energy transfer</subject><subject>Excitation</subject><subject>Excitons</subject><subject>Mapping</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkktv1DAUhSMEoqWwYQ-yYIOQBvyIE5sNQkPLQ5VACNaW59puPErs1HaA_jH-AH8Mt1OGx-paOp-Or89x09wn-BnBTD43DGbMJe22N5pD0nZsJbFob-7PfXfQ3Ml5izEmnLDbzQETtONYssNmOv4OvsSAzEXQk4eMXIoTKoNFk55nH85QHSlqGFCJKC_JabBoiFfaCwRxmnXyuTp882VAJz9_pFxsQjoY9Mka5-1oLu1i8jbfbW45PWZ773oeNV9Ojj-v365OP7x5t351uoJW9mUFuHV4I2EjKZYdaMs2dXfunGu5cGAkZb1xvBfGcNwTLpngmPSMGCI5FcCOmpc733nZTNaADSXpUc3JTzpdqKi9-lcJflBn8asiNTiJW1wdHu0cYi5e5ZqRhQFiCBaKorTm17UVenJ9TYrni81FTT6DHUcdbFyyopKIupEQpKKP_0O3cUmhhlApSmXXMSkr9XRHQYo5J-v2KxOsLrtWr9n641XX7yv88O9H7tHf5VbgwQ5IGfbqn8_CfgE19a_H</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Runeson, Johan E</creator><creator>Fay, Thomas P</creator><creator>Manolopoulos, David E</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7111-0763</orcidid><orcidid>https://orcid.org/0000-0001-8511-3650</orcidid><orcidid>https://orcid.org/0000-0003-0625-731X</orcidid><orcidid>https://orcid.org/000000030625731X</orcidid><orcidid>https://orcid.org/0000000185113650</orcidid><orcidid>https://orcid.org/0000000271110763</orcidid></search><sort><creationdate>20240207</creationdate><title>Exciton dynamics from the mapping approach to surface hopping: comparison with Förster and Redfield theories</title><author>Runeson, Johan E ; Fay, Thomas P ; Manolopoulos, David E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-c04f0b9cb92096cae3b0005fff458fcd9237df578dd50715938501731d19528c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><topic>Chromophores</topic><topic>Electron states</topic><topic>Energy transfer</topic><topic>Excitation</topic><topic>Excitons</topic><topic>Mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Runeson, Johan E</creatorcontrib><creatorcontrib>Fay, Thomas P</creatorcontrib><creatorcontrib>Manolopoulos, David E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Runeson, Johan E</au><au>Fay, Thomas P</au><au>Manolopoulos, David E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exciton dynamics from the mapping approach to surface hopping: comparison with Förster and Redfield theories</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-02-07</date><risdate>2024</risdate><volume>26</volume><issue>6</issue><spage>4929</spage><epage>4938</epage><pages>4929-4938</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We compare the recently introduced multi-state mapping approach to surface hopping (MASH) with the Förster and Redfield theories of excitation energy transfer. Whereas Förster theory relies on weak coupling between chromophores, and Redfield theory assumes the electronic excitations to be weakly coupled to fast chromophore vibrations, MASH is free from any perturbative or Markovian approximations. We illustrate this with an example application to the rate of energy transfer in a Frenkel-exciton dimer, showing that MASH interpolates correctly between the opposing regimes in which the Förster and Redfield results are reliable. We then compare the three methods for a realistic model of the Fenna-Matthews-Olson complex with a structured vibrational spectral density and static disorder in the excitation energies. In this case there are no exact results for comparison so we use MASH to assess the validity of Förster and Redfield theories. We find that Förster theory is the more accurate of the two on the picosecond timescale, as has been shown previously for a simpler model of this particular light-harvesting complex. We also explore various ways to sample the initial electronic state in MASH and find that they all give very similar results for exciton dynamics.
The mapping approach to surface hopping captures the Förster and Redfield limits of excitation energy transfer, and everything in between.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38265093</pmid><doi>10.1039/d3cp05926j</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7111-0763</orcidid><orcidid>https://orcid.org/0000-0001-8511-3650</orcidid><orcidid>https://orcid.org/0000-0003-0625-731X</orcidid><orcidid>https://orcid.org/000000030625731X</orcidid><orcidid>https://orcid.org/0000000185113650</orcidid><orcidid>https://orcid.org/0000000271110763</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2024-02, Vol.26 (6), p.4929-4938 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10849040 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chemistry Chromophores Electron states Energy transfer Excitation Excitons Mapping |
title | Exciton dynamics from the mapping approach to surface hopping: comparison with Förster and Redfield theories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exciton%20dynamics%20from%20the%20mapping%20approach%20to%20surface%20hopping:%20comparison%20with%20F%C3%B6rster%20and%20Redfield%20theories&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Runeson,%20Johan%20E&rft.date=2024-02-07&rft.volume=26&rft.issue=6&rft.spage=4929&rft.epage=4938&rft.pages=4929-4938&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp05926j&rft_dat=%3Cproquest_pubme%3E2922966399%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922966399&rft_id=info:pmid/38265093&rfr_iscdi=true |