Exciton dynamics from the mapping approach to surface hopping: comparison with Förster and Redfield theories

We compare the recently introduced multi-state mapping approach to surface hopping (MASH) with the Förster and Redfield theories of excitation energy transfer. Whereas Förster theory relies on weak coupling between chromophores, and Redfield theory assumes the electronic excitations to be weakly cou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-02, Vol.26 (6), p.4929-4938
Hauptverfasser: Runeson, Johan E, Fay, Thomas P, Manolopoulos, David E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4938
container_issue 6
container_start_page 4929
container_title Physical chemistry chemical physics : PCCP
container_volume 26
creator Runeson, Johan E
Fay, Thomas P
Manolopoulos, David E
description We compare the recently introduced multi-state mapping approach to surface hopping (MASH) with the Förster and Redfield theories of excitation energy transfer. Whereas Förster theory relies on weak coupling between chromophores, and Redfield theory assumes the electronic excitations to be weakly coupled to fast chromophore vibrations, MASH is free from any perturbative or Markovian approximations. We illustrate this with an example application to the rate of energy transfer in a Frenkel-exciton dimer, showing that MASH interpolates correctly between the opposing regimes in which the Förster and Redfield results are reliable. We then compare the three methods for a realistic model of the Fenna-Matthews-Olson complex with a structured vibrational spectral density and static disorder in the excitation energies. In this case there are no exact results for comparison so we use MASH to assess the validity of Förster and Redfield theories. We find that Förster theory is the more accurate of the two on the picosecond timescale, as has been shown previously for a simpler model of this particular light-harvesting complex. We also explore various ways to sample the initial electronic state in MASH and find that they all give very similar results for exciton dynamics. The mapping approach to surface hopping captures the Förster and Redfield limits of excitation energy transfer, and everything in between.
doi_str_mv 10.1039/d3cp05926j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10849040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922966399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-c04f0b9cb92096cae3b0005fff458fcd9237df578dd50715938501731d19528c3</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEoqWwYQ-yYIOQBvyIE5sNQkPLQ5VACNaW59puPErs1HaA_jH-AH8Mt1OGx-paOp-Or89x09wn-BnBTD43DGbMJe22N5pD0nZsJbFob-7PfXfQ3Ml5izEmnLDbzQETtONYssNmOv4OvsSAzEXQk4eMXIoTKoNFk55nH85QHSlqGFCJKC_JabBoiFfaCwRxmnXyuTp882VAJz9_pFxsQjoY9Mka5-1oLu1i8jbfbW45PWZ773oeNV9Ojj-v365OP7x5t351uoJW9mUFuHV4I2EjKZYdaMs2dXfunGu5cGAkZb1xvBfGcNwTLpngmPSMGCI5FcCOmpc733nZTNaADSXpUc3JTzpdqKi9-lcJflBn8asiNTiJW1wdHu0cYi5e5ZqRhQFiCBaKorTm17UVenJ9TYrni81FTT6DHUcdbFyyopKIupEQpKKP_0O3cUmhhlApSmXXMSkr9XRHQYo5J-v2KxOsLrtWr9n641XX7yv88O9H7tHf5VbgwQ5IGfbqn8_CfgE19a_H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922966399</pqid></control><display><type>article</type><title>Exciton dynamics from the mapping approach to surface hopping: comparison with Förster and Redfield theories</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Runeson, Johan E ; Fay, Thomas P ; Manolopoulos, David E</creator><creatorcontrib>Runeson, Johan E ; Fay, Thomas P ; Manolopoulos, David E</creatorcontrib><description>We compare the recently introduced multi-state mapping approach to surface hopping (MASH) with the Förster and Redfield theories of excitation energy transfer. Whereas Förster theory relies on weak coupling between chromophores, and Redfield theory assumes the electronic excitations to be weakly coupled to fast chromophore vibrations, MASH is free from any perturbative or Markovian approximations. We illustrate this with an example application to the rate of energy transfer in a Frenkel-exciton dimer, showing that MASH interpolates correctly between the opposing regimes in which the Förster and Redfield results are reliable. We then compare the three methods for a realistic model of the Fenna-Matthews-Olson complex with a structured vibrational spectral density and static disorder in the excitation energies. In this case there are no exact results for comparison so we use MASH to assess the validity of Förster and Redfield theories. We find that Förster theory is the more accurate of the two on the picosecond timescale, as has been shown previously for a simpler model of this particular light-harvesting complex. We also explore various ways to sample the initial electronic state in MASH and find that they all give very similar results for exciton dynamics. The mapping approach to surface hopping captures the Förster and Redfield limits of excitation energy transfer, and everything in between.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp05926j</identifier><identifier>PMID: 38265093</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Chromophores ; Electron states ; Energy transfer ; Excitation ; Excitons ; Mapping</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-02, Vol.26 (6), p.4929-4938</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © the Owner Societies 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-c04f0b9cb92096cae3b0005fff458fcd9237df578dd50715938501731d19528c3</citedby><cites>FETCH-LOGICAL-c497t-c04f0b9cb92096cae3b0005fff458fcd9237df578dd50715938501731d19528c3</cites><orcidid>0000-0002-7111-0763 ; 0000-0001-8511-3650 ; 0000-0003-0625-731X ; 000000030625731X ; 0000000185113650 ; 0000000271110763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38265093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2282664$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Runeson, Johan E</creatorcontrib><creatorcontrib>Fay, Thomas P</creatorcontrib><creatorcontrib>Manolopoulos, David E</creatorcontrib><title>Exciton dynamics from the mapping approach to surface hopping: comparison with Förster and Redfield theories</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We compare the recently introduced multi-state mapping approach to surface hopping (MASH) with the Förster and Redfield theories of excitation energy transfer. Whereas Förster theory relies on weak coupling between chromophores, and Redfield theory assumes the electronic excitations to be weakly coupled to fast chromophore vibrations, MASH is free from any perturbative or Markovian approximations. We illustrate this with an example application to the rate of energy transfer in a Frenkel-exciton dimer, showing that MASH interpolates correctly between the opposing regimes in which the Förster and Redfield results are reliable. We then compare the three methods for a realistic model of the Fenna-Matthews-Olson complex with a structured vibrational spectral density and static disorder in the excitation energies. In this case there are no exact results for comparison so we use MASH to assess the validity of Förster and Redfield theories. We find that Förster theory is the more accurate of the two on the picosecond timescale, as has been shown previously for a simpler model of this particular light-harvesting complex. We also explore various ways to sample the initial electronic state in MASH and find that they all give very similar results for exciton dynamics. The mapping approach to surface hopping captures the Förster and Redfield limits of excitation energy transfer, and everything in between.</description><subject>Chemistry</subject><subject>Chromophores</subject><subject>Electron states</subject><subject>Energy transfer</subject><subject>Excitation</subject><subject>Excitons</subject><subject>Mapping</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkktv1DAUhSMEoqWwYQ-yYIOQBvyIE5sNQkPLQ5VACNaW59puPErs1HaA_jH-AH8Mt1OGx-paOp-Or89x09wn-BnBTD43DGbMJe22N5pD0nZsJbFob-7PfXfQ3Ml5izEmnLDbzQETtONYssNmOv4OvsSAzEXQk4eMXIoTKoNFk55nH85QHSlqGFCJKC_JabBoiFfaCwRxmnXyuTp882VAJz9_pFxsQjoY9Mka5-1oLu1i8jbfbW45PWZ773oeNV9Ojj-v365OP7x5t351uoJW9mUFuHV4I2EjKZYdaMs2dXfunGu5cGAkZb1xvBfGcNwTLpngmPSMGCI5FcCOmpc733nZTNaADSXpUc3JTzpdqKi9-lcJflBn8asiNTiJW1wdHu0cYi5e5ZqRhQFiCBaKorTm17UVenJ9TYrni81FTT6DHUcdbFyyopKIupEQpKKP_0O3cUmhhlApSmXXMSkr9XRHQYo5J-v2KxOsLrtWr9n641XX7yv88O9H7tHf5VbgwQ5IGfbqn8_CfgE19a_H</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Runeson, Johan E</creator><creator>Fay, Thomas P</creator><creator>Manolopoulos, David E</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7111-0763</orcidid><orcidid>https://orcid.org/0000-0001-8511-3650</orcidid><orcidid>https://orcid.org/0000-0003-0625-731X</orcidid><orcidid>https://orcid.org/000000030625731X</orcidid><orcidid>https://orcid.org/0000000185113650</orcidid><orcidid>https://orcid.org/0000000271110763</orcidid></search><sort><creationdate>20240207</creationdate><title>Exciton dynamics from the mapping approach to surface hopping: comparison with Förster and Redfield theories</title><author>Runeson, Johan E ; Fay, Thomas P ; Manolopoulos, David E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-c04f0b9cb92096cae3b0005fff458fcd9237df578dd50715938501731d19528c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><topic>Chromophores</topic><topic>Electron states</topic><topic>Energy transfer</topic><topic>Excitation</topic><topic>Excitons</topic><topic>Mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Runeson, Johan E</creatorcontrib><creatorcontrib>Fay, Thomas P</creatorcontrib><creatorcontrib>Manolopoulos, David E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Runeson, Johan E</au><au>Fay, Thomas P</au><au>Manolopoulos, David E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exciton dynamics from the mapping approach to surface hopping: comparison with Förster and Redfield theories</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-02-07</date><risdate>2024</risdate><volume>26</volume><issue>6</issue><spage>4929</spage><epage>4938</epage><pages>4929-4938</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We compare the recently introduced multi-state mapping approach to surface hopping (MASH) with the Förster and Redfield theories of excitation energy transfer. Whereas Förster theory relies on weak coupling between chromophores, and Redfield theory assumes the electronic excitations to be weakly coupled to fast chromophore vibrations, MASH is free from any perturbative or Markovian approximations. We illustrate this with an example application to the rate of energy transfer in a Frenkel-exciton dimer, showing that MASH interpolates correctly between the opposing regimes in which the Förster and Redfield results are reliable. We then compare the three methods for a realistic model of the Fenna-Matthews-Olson complex with a structured vibrational spectral density and static disorder in the excitation energies. In this case there are no exact results for comparison so we use MASH to assess the validity of Förster and Redfield theories. We find that Förster theory is the more accurate of the two on the picosecond timescale, as has been shown previously for a simpler model of this particular light-harvesting complex. We also explore various ways to sample the initial electronic state in MASH and find that they all give very similar results for exciton dynamics. The mapping approach to surface hopping captures the Förster and Redfield limits of excitation energy transfer, and everything in between.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38265093</pmid><doi>10.1039/d3cp05926j</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7111-0763</orcidid><orcidid>https://orcid.org/0000-0001-8511-3650</orcidid><orcidid>https://orcid.org/0000-0003-0625-731X</orcidid><orcidid>https://orcid.org/000000030625731X</orcidid><orcidid>https://orcid.org/0000000185113650</orcidid><orcidid>https://orcid.org/0000000271110763</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2024-02, Vol.26 (6), p.4929-4938
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10849040
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chemistry
Chromophores
Electron states
Energy transfer
Excitation
Excitons
Mapping
title Exciton dynamics from the mapping approach to surface hopping: comparison with Förster and Redfield theories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exciton%20dynamics%20from%20the%20mapping%20approach%20to%20surface%20hopping:%20comparison%20with%20F%C3%B6rster%20and%20Redfield%20theories&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Runeson,%20Johan%20E&rft.date=2024-02-07&rft.volume=26&rft.issue=6&rft.spage=4929&rft.epage=4938&rft.pages=4929-4938&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp05926j&rft_dat=%3Cproquest_pubme%3E2922966399%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922966399&rft_id=info:pmid/38265093&rfr_iscdi=true