Evolution of a chordate-specific mechanism for myoblast fusion
Vertebrate myoblast fusion allows for multinucleated muscle fibers to compound the size and strength of mononucleated cells, but the evolution of this important process is unknown. We investigated the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various gr...
Gespeichert in:
Veröffentlicht in: | Science advances 2022-09, Vol.8 (35), p.eadd2696-eadd2696 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eadd2696 |
---|---|
container_issue | 35 |
container_start_page | eadd2696 |
container_title | Science advances |
container_volume | 8 |
creator | Zhang, Haifeng Shang, Renjie Kim, Kwantae Zheng, Wei Johnson, Christopher J Sun, Lei Niu, Xiang Liu, Liang Zhou, Jingqi Liu, Lingshu Zhang, Zheng Uyeno, Theodore A Pei, Jimin Fissette, Skye D Green, Stephen A Samudra, Sukhada P Wen, Junfei Zhang, Jianli Eggenschwiler, Jonathan T Menke, Douglas B Bronner, Marianne E Grishin, Nick V Li, Weiming Ye, Kaixiong Zhang, Yang Stolfi, Alberto Bi, Pengpeng |
description | Vertebrate myoblast fusion allows for multinucleated muscle fibers to compound the size and strength of mononucleated cells, but the evolution of this important process is unknown. We investigated the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various groups of chordates. Here, we report that
likely arose through gene duplication in the last common ancestor of tunicates and vertebrates, while
appears to have evolved de novo in early vertebrates. Functional tests revealed a complex evolutionary history of myoblast fusion. A prevertebrate phase of muscle multinucleation driven by Myomaker was followed by the later emergence of Myomixer that enables the highly efficient fusion system of vertebrates. Evolutionary comparisons between vertebrate and nonvertebrate Myomaker revealed key structural and mechanistic insights into myoblast fusion. Thus, our findings suggest an evolutionary model of chordate fusogens and illustrate how new genes shape the emergence of novel morphogenetic traits and mechanisms. |
doi_str_mv | 10.1126/sciadv.add2696 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10848958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709737362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-6eb631951e6a1f898efede8cb39b6f062c32e59b9f9cbad82565afd8ae42bc3e3</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMottRePcoevWzNxyZNLoqU-gEFL3oOSXZiI7ubutkt9L93pbXU0wzMe28eP4SuCZ4RQsVdcsGU25kpSyqUOENjyuY8p7yQ5yf7CE1T-sIYk0IITtQlGjGBecE4H6P75TZWfRdik0WfmcytY1uaDvK0ARd8cFkNbm2akOrMxzard9FWJnWZ79NgukIX3lQJpoc5QR9Py_fFS756e35dPK5yxxTpcgFWMKI4AWGIl0qChxKks0xZ4bGgjlHgyiqvnDWlpFxw40tpoKDWMWAT9LDP3fS2htJB07Wm0ps21Kbd6WiC_n9pwlp_xq0mWBZScTkk3B4S2vjdQ-p0HZKDqjINxD5pOsdqzuZM0EE620tdG1NqwR__EKx_wes9eH0APxhuTtsd5X-Y2Q-u8ILl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709737362</pqid></control><display><type>article</type><title>Evolution of a chordate-specific mechanism for myoblast fusion</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Haifeng ; Shang, Renjie ; Kim, Kwantae ; Zheng, Wei ; Johnson, Christopher J ; Sun, Lei ; Niu, Xiang ; Liu, Liang ; Zhou, Jingqi ; Liu, Lingshu ; Zhang, Zheng ; Uyeno, Theodore A ; Pei, Jimin ; Fissette, Skye D ; Green, Stephen A ; Samudra, Sukhada P ; Wen, Junfei ; Zhang, Jianli ; Eggenschwiler, Jonathan T ; Menke, Douglas B ; Bronner, Marianne E ; Grishin, Nick V ; Li, Weiming ; Ye, Kaixiong ; Zhang, Yang ; Stolfi, Alberto ; Bi, Pengpeng</creator><creatorcontrib>Zhang, Haifeng ; Shang, Renjie ; Kim, Kwantae ; Zheng, Wei ; Johnson, Christopher J ; Sun, Lei ; Niu, Xiang ; Liu, Liang ; Zhou, Jingqi ; Liu, Lingshu ; Zhang, Zheng ; Uyeno, Theodore A ; Pei, Jimin ; Fissette, Skye D ; Green, Stephen A ; Samudra, Sukhada P ; Wen, Junfei ; Zhang, Jianli ; Eggenschwiler, Jonathan T ; Menke, Douglas B ; Bronner, Marianne E ; Grishin, Nick V ; Li, Weiming ; Ye, Kaixiong ; Zhang, Yang ; Stolfi, Alberto ; Bi, Pengpeng</creatorcontrib><description>Vertebrate myoblast fusion allows for multinucleated muscle fibers to compound the size and strength of mononucleated cells, but the evolution of this important process is unknown. We investigated the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various groups of chordates. Here, we report that
likely arose through gene duplication in the last common ancestor of tunicates and vertebrates, while
appears to have evolved de novo in early vertebrates. Functional tests revealed a complex evolutionary history of myoblast fusion. A prevertebrate phase of muscle multinucleation driven by Myomaker was followed by the later emergence of Myomixer that enables the highly efficient fusion system of vertebrates. Evolutionary comparisons between vertebrate and nonvertebrate Myomaker revealed key structural and mechanistic insights into myoblast fusion. Thus, our findings suggest an evolutionary model of chordate fusogens and illustrate how new genes shape the emergence of novel morphogenetic traits and mechanisms.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.add2696</identifier><identifier>PMID: 36054355</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biomedicine and Life Sciences ; Evolutionary Biology ; SciAdv r-articles</subject><ispartof>Science advances, 2022-09, Vol.8 (35), p.eadd2696-eadd2696</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-6eb631951e6a1f898efede8cb39b6f062c32e59b9f9cbad82565afd8ae42bc3e3</citedby><cites>FETCH-LOGICAL-c391t-6eb631951e6a1f898efede8cb39b6f062c32e59b9f9cbad82565afd8ae42bc3e3</cites><orcidid>0000-0001-8741-0202 ; 0000-0001-8998-5595 ; 0000-0003-4658-7292 ; 0000-0002-9184-4094 ; 0000-0002-9961-199X ; 0000-0003-4108-1153 ; 0000-0001-5437-1518 ; 0000-0001-7179-9700 ; 0000-0002-5126-4490 ; 0000-0001-6444-8865 ; 0000-0003-0595-2919 ; 0000-0002-9871-6773 ; 0000-0003-4274-1862 ; 0000-0001-8267-6124 ; 0000-0002-7006-8970 ; 0000-0002-3505-9665 ; 0000-0002-2831-3610 ; 0000-0002-7109-1451 ; 0000-0002-2984-9003 ; 0000-0003-0568-4264 ; 0000-0001-7689-0941 ; 0000-0002-2739-1916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848958/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848958/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36054355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Shang, Renjie</creatorcontrib><creatorcontrib>Kim, Kwantae</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Johnson, Christopher J</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Niu, Xiang</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Zhou, Jingqi</creatorcontrib><creatorcontrib>Liu, Lingshu</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Uyeno, Theodore A</creatorcontrib><creatorcontrib>Pei, Jimin</creatorcontrib><creatorcontrib>Fissette, Skye D</creatorcontrib><creatorcontrib>Green, Stephen A</creatorcontrib><creatorcontrib>Samudra, Sukhada P</creatorcontrib><creatorcontrib>Wen, Junfei</creatorcontrib><creatorcontrib>Zhang, Jianli</creatorcontrib><creatorcontrib>Eggenschwiler, Jonathan T</creatorcontrib><creatorcontrib>Menke, Douglas B</creatorcontrib><creatorcontrib>Bronner, Marianne E</creatorcontrib><creatorcontrib>Grishin, Nick V</creatorcontrib><creatorcontrib>Li, Weiming</creatorcontrib><creatorcontrib>Ye, Kaixiong</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Stolfi, Alberto</creatorcontrib><creatorcontrib>Bi, Pengpeng</creatorcontrib><title>Evolution of a chordate-specific mechanism for myoblast fusion</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Vertebrate myoblast fusion allows for multinucleated muscle fibers to compound the size and strength of mononucleated cells, but the evolution of this important process is unknown. We investigated the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various groups of chordates. Here, we report that
likely arose through gene duplication in the last common ancestor of tunicates and vertebrates, while
appears to have evolved de novo in early vertebrates. Functional tests revealed a complex evolutionary history of myoblast fusion. A prevertebrate phase of muscle multinucleation driven by Myomaker was followed by the later emergence of Myomixer that enables the highly efficient fusion system of vertebrates. Evolutionary comparisons between vertebrate and nonvertebrate Myomaker revealed key structural and mechanistic insights into myoblast fusion. Thus, our findings suggest an evolutionary model of chordate fusogens and illustrate how new genes shape the emergence of novel morphogenetic traits and mechanisms.</description><subject>Biomedicine and Life Sciences</subject><subject>Evolutionary Biology</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LAzEQxYMottRePcoevWzNxyZNLoqU-gEFL3oOSXZiI7ubutkt9L93pbXU0wzMe28eP4SuCZ4RQsVdcsGU25kpSyqUOENjyuY8p7yQ5yf7CE1T-sIYk0IITtQlGjGBecE4H6P75TZWfRdik0WfmcytY1uaDvK0ARd8cFkNbm2akOrMxzard9FWJnWZ79NgukIX3lQJpoc5QR9Py_fFS756e35dPK5yxxTpcgFWMKI4AWGIl0qChxKks0xZ4bGgjlHgyiqvnDWlpFxw40tpoKDWMWAT9LDP3fS2htJB07Wm0ps21Kbd6WiC_n9pwlp_xq0mWBZScTkk3B4S2vjdQ-p0HZKDqjINxD5pOsdqzuZM0EE620tdG1NqwR__EKx_wes9eH0APxhuTtsd5X-Y2Q-u8ILl</recordid><startdate>20220902</startdate><enddate>20220902</enddate><creator>Zhang, Haifeng</creator><creator>Shang, Renjie</creator><creator>Kim, Kwantae</creator><creator>Zheng, Wei</creator><creator>Johnson, Christopher J</creator><creator>Sun, Lei</creator><creator>Niu, Xiang</creator><creator>Liu, Liang</creator><creator>Zhou, Jingqi</creator><creator>Liu, Lingshu</creator><creator>Zhang, Zheng</creator><creator>Uyeno, Theodore A</creator><creator>Pei, Jimin</creator><creator>Fissette, Skye D</creator><creator>Green, Stephen A</creator><creator>Samudra, Sukhada P</creator><creator>Wen, Junfei</creator><creator>Zhang, Jianli</creator><creator>Eggenschwiler, Jonathan T</creator><creator>Menke, Douglas B</creator><creator>Bronner, Marianne E</creator><creator>Grishin, Nick V</creator><creator>Li, Weiming</creator><creator>Ye, Kaixiong</creator><creator>Zhang, Yang</creator><creator>Stolfi, Alberto</creator><creator>Bi, Pengpeng</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8741-0202</orcidid><orcidid>https://orcid.org/0000-0001-8998-5595</orcidid><orcidid>https://orcid.org/0000-0003-4658-7292</orcidid><orcidid>https://orcid.org/0000-0002-9184-4094</orcidid><orcidid>https://orcid.org/0000-0002-9961-199X</orcidid><orcidid>https://orcid.org/0000-0003-4108-1153</orcidid><orcidid>https://orcid.org/0000-0001-5437-1518</orcidid><orcidid>https://orcid.org/0000-0001-7179-9700</orcidid><orcidid>https://orcid.org/0000-0002-5126-4490</orcidid><orcidid>https://orcid.org/0000-0001-6444-8865</orcidid><orcidid>https://orcid.org/0000-0003-0595-2919</orcidid><orcidid>https://orcid.org/0000-0002-9871-6773</orcidid><orcidid>https://orcid.org/0000-0003-4274-1862</orcidid><orcidid>https://orcid.org/0000-0001-8267-6124</orcidid><orcidid>https://orcid.org/0000-0002-7006-8970</orcidid><orcidid>https://orcid.org/0000-0002-3505-9665</orcidid><orcidid>https://orcid.org/0000-0002-2831-3610</orcidid><orcidid>https://orcid.org/0000-0002-7109-1451</orcidid><orcidid>https://orcid.org/0000-0002-2984-9003</orcidid><orcidid>https://orcid.org/0000-0003-0568-4264</orcidid><orcidid>https://orcid.org/0000-0001-7689-0941</orcidid><orcidid>https://orcid.org/0000-0002-2739-1916</orcidid></search><sort><creationdate>20220902</creationdate><title>Evolution of a chordate-specific mechanism for myoblast fusion</title><author>Zhang, Haifeng ; Shang, Renjie ; Kim, Kwantae ; Zheng, Wei ; Johnson, Christopher J ; Sun, Lei ; Niu, Xiang ; Liu, Liang ; Zhou, Jingqi ; Liu, Lingshu ; Zhang, Zheng ; Uyeno, Theodore A ; Pei, Jimin ; Fissette, Skye D ; Green, Stephen A ; Samudra, Sukhada P ; Wen, Junfei ; Zhang, Jianli ; Eggenschwiler, Jonathan T ; Menke, Douglas B ; Bronner, Marianne E ; Grishin, Nick V ; Li, Weiming ; Ye, Kaixiong ; Zhang, Yang ; Stolfi, Alberto ; Bi, Pengpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-6eb631951e6a1f898efede8cb39b6f062c32e59b9f9cbad82565afd8ae42bc3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedicine and Life Sciences</topic><topic>Evolutionary Biology</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Shang, Renjie</creatorcontrib><creatorcontrib>Kim, Kwantae</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Johnson, Christopher J</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Niu, Xiang</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Zhou, Jingqi</creatorcontrib><creatorcontrib>Liu, Lingshu</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Uyeno, Theodore A</creatorcontrib><creatorcontrib>Pei, Jimin</creatorcontrib><creatorcontrib>Fissette, Skye D</creatorcontrib><creatorcontrib>Green, Stephen A</creatorcontrib><creatorcontrib>Samudra, Sukhada P</creatorcontrib><creatorcontrib>Wen, Junfei</creatorcontrib><creatorcontrib>Zhang, Jianli</creatorcontrib><creatorcontrib>Eggenschwiler, Jonathan T</creatorcontrib><creatorcontrib>Menke, Douglas B</creatorcontrib><creatorcontrib>Bronner, Marianne E</creatorcontrib><creatorcontrib>Grishin, Nick V</creatorcontrib><creatorcontrib>Li, Weiming</creatorcontrib><creatorcontrib>Ye, Kaixiong</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Stolfi, Alberto</creatorcontrib><creatorcontrib>Bi, Pengpeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Haifeng</au><au>Shang, Renjie</au><au>Kim, Kwantae</au><au>Zheng, Wei</au><au>Johnson, Christopher J</au><au>Sun, Lei</au><au>Niu, Xiang</au><au>Liu, Liang</au><au>Zhou, Jingqi</au><au>Liu, Lingshu</au><au>Zhang, Zheng</au><au>Uyeno, Theodore A</au><au>Pei, Jimin</au><au>Fissette, Skye D</au><au>Green, Stephen A</au><au>Samudra, Sukhada P</au><au>Wen, Junfei</au><au>Zhang, Jianli</au><au>Eggenschwiler, Jonathan T</au><au>Menke, Douglas B</au><au>Bronner, Marianne E</au><au>Grishin, Nick V</au><au>Li, Weiming</au><au>Ye, Kaixiong</au><au>Zhang, Yang</au><au>Stolfi, Alberto</au><au>Bi, Pengpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of a chordate-specific mechanism for myoblast fusion</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-09-02</date><risdate>2022</risdate><volume>8</volume><issue>35</issue><spage>eadd2696</spage><epage>eadd2696</epage><pages>eadd2696-eadd2696</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Vertebrate myoblast fusion allows for multinucleated muscle fibers to compound the size and strength of mononucleated cells, but the evolution of this important process is unknown. We investigated the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various groups of chordates. Here, we report that
likely arose through gene duplication in the last common ancestor of tunicates and vertebrates, while
appears to have evolved de novo in early vertebrates. Functional tests revealed a complex evolutionary history of myoblast fusion. A prevertebrate phase of muscle multinucleation driven by Myomaker was followed by the later emergence of Myomixer that enables the highly efficient fusion system of vertebrates. Evolutionary comparisons between vertebrate and nonvertebrate Myomaker revealed key structural and mechanistic insights into myoblast fusion. Thus, our findings suggest an evolutionary model of chordate fusogens and illustrate how new genes shape the emergence of novel morphogenetic traits and mechanisms.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>36054355</pmid><doi>10.1126/sciadv.add2696</doi><orcidid>https://orcid.org/0000-0001-8741-0202</orcidid><orcidid>https://orcid.org/0000-0001-8998-5595</orcidid><orcidid>https://orcid.org/0000-0003-4658-7292</orcidid><orcidid>https://orcid.org/0000-0002-9184-4094</orcidid><orcidid>https://orcid.org/0000-0002-9961-199X</orcidid><orcidid>https://orcid.org/0000-0003-4108-1153</orcidid><orcidid>https://orcid.org/0000-0001-5437-1518</orcidid><orcidid>https://orcid.org/0000-0001-7179-9700</orcidid><orcidid>https://orcid.org/0000-0002-5126-4490</orcidid><orcidid>https://orcid.org/0000-0001-6444-8865</orcidid><orcidid>https://orcid.org/0000-0003-0595-2919</orcidid><orcidid>https://orcid.org/0000-0002-9871-6773</orcidid><orcidid>https://orcid.org/0000-0003-4274-1862</orcidid><orcidid>https://orcid.org/0000-0001-8267-6124</orcidid><orcidid>https://orcid.org/0000-0002-7006-8970</orcidid><orcidid>https://orcid.org/0000-0002-3505-9665</orcidid><orcidid>https://orcid.org/0000-0002-2831-3610</orcidid><orcidid>https://orcid.org/0000-0002-7109-1451</orcidid><orcidid>https://orcid.org/0000-0002-2984-9003</orcidid><orcidid>https://orcid.org/0000-0003-0568-4264</orcidid><orcidid>https://orcid.org/0000-0001-7689-0941</orcidid><orcidid>https://orcid.org/0000-0002-2739-1916</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2022-09, Vol.8 (35), p.eadd2696-eadd2696 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10848958 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biomedicine and Life Sciences Evolutionary Biology SciAdv r-articles |
title | Evolution of a chordate-specific mechanism for myoblast fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20a%20chordate-specific%20mechanism%20for%20myoblast%20fusion&rft.jtitle=Science%20advances&rft.au=Zhang,%20Haifeng&rft.date=2022-09-02&rft.volume=8&rft.issue=35&rft.spage=eadd2696&rft.epage=eadd2696&rft.pages=eadd2696-eadd2696&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.add2696&rft_dat=%3Cproquest_pubme%3E2709737362%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709737362&rft_id=info:pmid/36054355&rfr_iscdi=true |