Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms
Solid electrolyte interphase (SEI) engineering is an efficient approach to enhancing the cycling performance of lithium metal batteries. Lithium hexafluorophosphate (LiPF6) is a popular electrolyte salt. Mechanistic insights into its degradation pathways near the lithium metal anode are critical in...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2023-02, Vol.127 (4), p.1744-1751 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1751 |
---|---|
container_issue | 4 |
container_start_page | 1744 |
container_title | Journal of physical chemistry. C |
container_volume | 127 |
creator | Kuai, Dacheng Balbuena, Perla B. |
description | Solid electrolyte interphase (SEI) engineering is an efficient approach to enhancing the cycling performance of lithium metal batteries. Lithium hexafluorophosphate (LiPF6) is a popular electrolyte salt. Mechanistic insights into its degradation pathways near the lithium metal anode are critical in modifying the battery electrolyte and SEI. In this work, we elucidate plausible reaction pathways in multiple representative electrolyte systems. Through ab initio molecular dynamics simulations, lithiation and electron transfer are identified as the triggering factors for LiPF6 degradation. Meanwhile, we find that lithium morphology and charge distribution substantially impact the interfacial dissociation pathways. Thermodynamic evaluation of the solvation effects shows that higher electrolyte dielectric constant and lithiation extent profoundly assist the LiPF6 decomposition. These findings offer quantitative thermodynamic and electronic structure information, which promotes rational SEI engineering and electrolyte tuning for lithium metal anode performance enhancement. |
doi_str_mv | 10.1021/acs.jpcc.2c07838 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10848255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925002883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-8dc9f01ce4ff6f0d161cea7f04971072279bd511b1a8087ca141f79d07f6a3983</originalsourceid><addsrcrecordid>eNp1kUtvEzEUhS0EoiWwZ4VGrFiQ4MdM7FkhVEIbqQiJx9pyPNeJqxl78PVU5N_jNCGCBStfyeec-_gIecnoglHO3hmLi7vR2gW3VCqhHpFL1go-l3XTPD7XtbwgzxDvKG0EZeIpuRBKCNHU9SW5X4eYtiZ4W32Lve-qVQ82p9jvM1TrkCGNO4NQrcLWB4Dkw7b6arKPwfSARYGjT9BVm311A7-M66eY4riLWGwl4SPYOIwR_cFRfQa7K61wwOfkiTM9wovTOyM_Pq2-X93Mb79cr68-3M5NvWR5rjrbOsos1M4tHe3YstRGOlq3klHJuWw3XcPYhhlFlbSG1czJtqPSLY1olZiR98fccdoM0FkIOZlej8kPJu11NF7_-xP8Tm_jvWZU1Yo3TUl4fUyImL1G63NZwsYQypk050rKctIZeXNqk-LPCTDrwaOFvjcB4oSat7yhlKty9hmhR6lNETGBOw_DqD5A1QWqPkDVJ6jF8urvJc6GPxSL4O1R8GCNUypw8P95vwEkSbFp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925002883</pqid></control><display><type>article</type><title>Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms</title><source>American Chemical Society Journals</source><creator>Kuai, Dacheng ; Balbuena, Perla B.</creator><creatorcontrib>Kuai, Dacheng ; Balbuena, Perla B. ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Solid electrolyte interphase (SEI) engineering is an efficient approach to enhancing the cycling performance of lithium metal batteries. Lithium hexafluorophosphate (LiPF6) is a popular electrolyte salt. Mechanistic insights into its degradation pathways near the lithium metal anode are critical in modifying the battery electrolyte and SEI. In this work, we elucidate plausible reaction pathways in multiple representative electrolyte systems. Through ab initio molecular dynamics simulations, lithiation and electron transfer are identified as the triggering factors for LiPF6 degradation. Meanwhile, we find that lithium morphology and charge distribution substantially impact the interfacial dissociation pathways. Thermodynamic evaluation of the solvation effects shows that higher electrolyte dielectric constant and lithiation extent profoundly assist the LiPF6 decomposition. These findings offer quantitative thermodynamic and electronic structure information, which promotes rational SEI engineering and electrolyte tuning for lithium metal anode performance enhancement.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c07838</identifier><identifier>PMID: 38333544</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Energy Conversion and Storage ; degradation ; electrolytes ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; lithium ; metals ; surface chemistry</subject><ispartof>Journal of physical chemistry. C, 2023-02, Vol.127 (4), p.1744-1751</ispartof><rights>2023 American Chemical Society</rights><rights>2023 American Chemical Society.</rights><rights>2023 American Chemical Society 2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-8dc9f01ce4ff6f0d161cea7f04971072279bd511b1a8087ca141f79d07f6a3983</citedby><cites>FETCH-LOGICAL-a461t-8dc9f01ce4ff6f0d161cea7f04971072279bd511b1a8087ca141f79d07f6a3983</cites><orcidid>0000-0002-2358-3910 ; 0000-0002-4787-7331 ; 0000000223583910 ; 0000000247877331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c07838$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c07838$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38333544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2287701$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuai, Dacheng</creatorcontrib><creatorcontrib>Balbuena, Perla B.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Solid electrolyte interphase (SEI) engineering is an efficient approach to enhancing the cycling performance of lithium metal batteries. Lithium hexafluorophosphate (LiPF6) is a popular electrolyte salt. Mechanistic insights into its degradation pathways near the lithium metal anode are critical in modifying the battery electrolyte and SEI. In this work, we elucidate plausible reaction pathways in multiple representative electrolyte systems. Through ab initio molecular dynamics simulations, lithiation and electron transfer are identified as the triggering factors for LiPF6 degradation. Meanwhile, we find that lithium morphology and charge distribution substantially impact the interfacial dissociation pathways. Thermodynamic evaluation of the solvation effects shows that higher electrolyte dielectric constant and lithiation extent profoundly assist the LiPF6 decomposition. These findings offer quantitative thermodynamic and electronic structure information, which promotes rational SEI engineering and electrolyte tuning for lithium metal anode performance enhancement.</description><subject>C: Energy Conversion and Storage</subject><subject>degradation</subject><subject>electrolytes</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>lithium</subject><subject>metals</subject><subject>surface chemistry</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kUtvEzEUhS0EoiWwZ4VGrFiQ4MdM7FkhVEIbqQiJx9pyPNeJqxl78PVU5N_jNCGCBStfyeec-_gIecnoglHO3hmLi7vR2gW3VCqhHpFL1go-l3XTPD7XtbwgzxDvKG0EZeIpuRBKCNHU9SW5X4eYtiZ4W32Lve-qVQ82p9jvM1TrkCGNO4NQrcLWB4Dkw7b6arKPwfSARYGjT9BVm311A7-M66eY4riLWGwl4SPYOIwR_cFRfQa7K61wwOfkiTM9wovTOyM_Pq2-X93Mb79cr68-3M5NvWR5rjrbOsos1M4tHe3YstRGOlq3klHJuWw3XcPYhhlFlbSG1czJtqPSLY1olZiR98fccdoM0FkIOZlej8kPJu11NF7_-xP8Tm_jvWZU1Yo3TUl4fUyImL1G63NZwsYQypk050rKctIZeXNqk-LPCTDrwaOFvjcB4oSat7yhlKty9hmhR6lNETGBOw_DqD5A1QWqPkDVJ6jF8urvJc6GPxSL4O1R8GCNUypw8P95vwEkSbFp</recordid><startdate>20230202</startdate><enddate>20230202</enddate><creator>Kuai, Dacheng</creator><creator>Balbuena, Perla B.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2358-3910</orcidid><orcidid>https://orcid.org/0000-0002-4787-7331</orcidid><orcidid>https://orcid.org/0000000223583910</orcidid><orcidid>https://orcid.org/0000000247877331</orcidid></search><sort><creationdate>20230202</creationdate><title>Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms</title><author>Kuai, Dacheng ; Balbuena, Perla B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-8dc9f01ce4ff6f0d161cea7f04971072279bd511b1a8087ca141f79d07f6a3983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Energy Conversion and Storage</topic><topic>degradation</topic><topic>electrolytes</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>lithium</topic><topic>metals</topic><topic>surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuai, Dacheng</creatorcontrib><creatorcontrib>Balbuena, Perla B.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuai, Dacheng</au><au>Balbuena, Perla B.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-02-02</date><risdate>2023</risdate><volume>127</volume><issue>4</issue><spage>1744</spage><epage>1751</epage><pages>1744-1751</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Solid electrolyte interphase (SEI) engineering is an efficient approach to enhancing the cycling performance of lithium metal batteries. Lithium hexafluorophosphate (LiPF6) is a popular electrolyte salt. Mechanistic insights into its degradation pathways near the lithium metal anode are critical in modifying the battery electrolyte and SEI. In this work, we elucidate plausible reaction pathways in multiple representative electrolyte systems. Through ab initio molecular dynamics simulations, lithiation and electron transfer are identified as the triggering factors for LiPF6 degradation. Meanwhile, we find that lithium morphology and charge distribution substantially impact the interfacial dissociation pathways. Thermodynamic evaluation of the solvation effects shows that higher electrolyte dielectric constant and lithiation extent profoundly assist the LiPF6 decomposition. These findings offer quantitative thermodynamic and electronic structure information, which promotes rational SEI engineering and electrolyte tuning for lithium metal anode performance enhancement.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38333544</pmid><doi>10.1021/acs.jpcc.2c07838</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2358-3910</orcidid><orcidid>https://orcid.org/0000-0002-4787-7331</orcidid><orcidid>https://orcid.org/0000000223583910</orcidid><orcidid>https://orcid.org/0000000247877331</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2023-02, Vol.127 (4), p.1744-1751 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10848255 |
source | American Chemical Society Journals |
subjects | C: Energy Conversion and Storage degradation electrolytes INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY lithium metals surface chemistry |
title | Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inorganic%20Solid%20Electrolyte%20Interphase%20Engineering%20Rationales%20Inspired%20by%20Hexafluorophosphate%20Decomposition%20Mechanisms&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kuai,%20Dacheng&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-02-02&rft.volume=127&rft.issue=4&rft.spage=1744&rft.epage=1751&rft.pages=1744-1751&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c07838&rft_dat=%3Cproquest_pubme%3E2925002883%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925002883&rft_id=info:pmid/38333544&rfr_iscdi=true |