Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms

Solid electrolyte interphase (SEI) engineering is an efficient approach to enhancing the cycling performance of lithium metal batteries. Lithium hexafluorophosphate (LiPF6) is a popular electrolyte salt. Mechanistic insights into its degradation pathways near the lithium metal anode are critical in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-02, Vol.127 (4), p.1744-1751
Hauptverfasser: Kuai, Dacheng, Balbuena, Perla B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1751
container_issue 4
container_start_page 1744
container_title Journal of physical chemistry. C
container_volume 127
creator Kuai, Dacheng
Balbuena, Perla B.
description Solid electrolyte interphase (SEI) engineering is an efficient approach to enhancing the cycling performance of lithium metal batteries. Lithium hexafluorophosphate (LiPF6) is a popular electrolyte salt. Mechanistic insights into its degradation pathways near the lithium metal anode are critical in modifying the battery electrolyte and SEI. In this work, we elucidate plausible reaction pathways in multiple representative electrolyte systems. Through ab initio molecular dynamics simulations, lithiation and electron transfer are identified as the triggering factors for LiPF6 degradation. Meanwhile, we find that lithium morphology and charge distribution substantially impact the interfacial dissociation pathways. Thermodynamic evaluation of the solvation effects shows that higher electrolyte dielectric constant and lithiation extent profoundly assist the LiPF6 decomposition. These findings offer quantitative thermodynamic and electronic structure information, which promotes rational SEI engineering and electrolyte tuning for lithium metal anode performance enhancement.
doi_str_mv 10.1021/acs.jpcc.2c07838
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10848255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925002883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-8dc9f01ce4ff6f0d161cea7f04971072279bd511b1a8087ca141f79d07f6a3983</originalsourceid><addsrcrecordid>eNp1kUtvEzEUhS0EoiWwZ4VGrFiQ4MdM7FkhVEIbqQiJx9pyPNeJqxl78PVU5N_jNCGCBStfyeec-_gIecnoglHO3hmLi7vR2gW3VCqhHpFL1go-l3XTPD7XtbwgzxDvKG0EZeIpuRBKCNHU9SW5X4eYtiZ4W32Lve-qVQ82p9jvM1TrkCGNO4NQrcLWB4Dkw7b6arKPwfSARYGjT9BVm311A7-M66eY4riLWGwl4SPYOIwR_cFRfQa7K61wwOfkiTM9wovTOyM_Pq2-X93Mb79cr68-3M5NvWR5rjrbOsos1M4tHe3YstRGOlq3klHJuWw3XcPYhhlFlbSG1czJtqPSLY1olZiR98fccdoM0FkIOZlej8kPJu11NF7_-xP8Tm_jvWZU1Yo3TUl4fUyImL1G63NZwsYQypk050rKctIZeXNqk-LPCTDrwaOFvjcB4oSat7yhlKty9hmhR6lNETGBOw_DqD5A1QWqPkDVJ6jF8urvJc6GPxSL4O1R8GCNUypw8P95vwEkSbFp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925002883</pqid></control><display><type>article</type><title>Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms</title><source>American Chemical Society Journals</source><creator>Kuai, Dacheng ; Balbuena, Perla B.</creator><creatorcontrib>Kuai, Dacheng ; Balbuena, Perla B. ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Solid electrolyte interphase (SEI) engineering is an efficient approach to enhancing the cycling performance of lithium metal batteries. Lithium hexafluorophosphate (LiPF6) is a popular electrolyte salt. Mechanistic insights into its degradation pathways near the lithium metal anode are critical in modifying the battery electrolyte and SEI. In this work, we elucidate plausible reaction pathways in multiple representative electrolyte systems. Through ab initio molecular dynamics simulations, lithiation and electron transfer are identified as the triggering factors for LiPF6 degradation. Meanwhile, we find that lithium morphology and charge distribution substantially impact the interfacial dissociation pathways. Thermodynamic evaluation of the solvation effects shows that higher electrolyte dielectric constant and lithiation extent profoundly assist the LiPF6 decomposition. These findings offer quantitative thermodynamic and electronic structure information, which promotes rational SEI engineering and electrolyte tuning for lithium metal anode performance enhancement.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c07838</identifier><identifier>PMID: 38333544</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Energy Conversion and Storage ; degradation ; electrolytes ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; lithium ; metals ; surface chemistry</subject><ispartof>Journal of physical chemistry. C, 2023-02, Vol.127 (4), p.1744-1751</ispartof><rights>2023 American Chemical Society</rights><rights>2023 American Chemical Society.</rights><rights>2023 American Chemical Society 2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-8dc9f01ce4ff6f0d161cea7f04971072279bd511b1a8087ca141f79d07f6a3983</citedby><cites>FETCH-LOGICAL-a461t-8dc9f01ce4ff6f0d161cea7f04971072279bd511b1a8087ca141f79d07f6a3983</cites><orcidid>0000-0002-2358-3910 ; 0000-0002-4787-7331 ; 0000000223583910 ; 0000000247877331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c07838$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c07838$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38333544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2287701$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuai, Dacheng</creatorcontrib><creatorcontrib>Balbuena, Perla B.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Solid electrolyte interphase (SEI) engineering is an efficient approach to enhancing the cycling performance of lithium metal batteries. Lithium hexafluorophosphate (LiPF6) is a popular electrolyte salt. Mechanistic insights into its degradation pathways near the lithium metal anode are critical in modifying the battery electrolyte and SEI. In this work, we elucidate plausible reaction pathways in multiple representative electrolyte systems. Through ab initio molecular dynamics simulations, lithiation and electron transfer are identified as the triggering factors for LiPF6 degradation. Meanwhile, we find that lithium morphology and charge distribution substantially impact the interfacial dissociation pathways. Thermodynamic evaluation of the solvation effects shows that higher electrolyte dielectric constant and lithiation extent profoundly assist the LiPF6 decomposition. These findings offer quantitative thermodynamic and electronic structure information, which promotes rational SEI engineering and electrolyte tuning for lithium metal anode performance enhancement.</description><subject>C: Energy Conversion and Storage</subject><subject>degradation</subject><subject>electrolytes</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>lithium</subject><subject>metals</subject><subject>surface chemistry</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kUtvEzEUhS0EoiWwZ4VGrFiQ4MdM7FkhVEIbqQiJx9pyPNeJqxl78PVU5N_jNCGCBStfyeec-_gIecnoglHO3hmLi7vR2gW3VCqhHpFL1go-l3XTPD7XtbwgzxDvKG0EZeIpuRBKCNHU9SW5X4eYtiZ4W32Lve-qVQ82p9jvM1TrkCGNO4NQrcLWB4Dkw7b6arKPwfSARYGjT9BVm311A7-M66eY4riLWGwl4SPYOIwR_cFRfQa7K61wwOfkiTM9wovTOyM_Pq2-X93Mb79cr68-3M5NvWR5rjrbOsos1M4tHe3YstRGOlq3klHJuWw3XcPYhhlFlbSG1czJtqPSLY1olZiR98fccdoM0FkIOZlej8kPJu11NF7_-xP8Tm_jvWZU1Yo3TUl4fUyImL1G63NZwsYQypk050rKctIZeXNqk-LPCTDrwaOFvjcB4oSat7yhlKty9hmhR6lNETGBOw_DqD5A1QWqPkDVJ6jF8urvJc6GPxSL4O1R8GCNUypw8P95vwEkSbFp</recordid><startdate>20230202</startdate><enddate>20230202</enddate><creator>Kuai, Dacheng</creator><creator>Balbuena, Perla B.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2358-3910</orcidid><orcidid>https://orcid.org/0000-0002-4787-7331</orcidid><orcidid>https://orcid.org/0000000223583910</orcidid><orcidid>https://orcid.org/0000000247877331</orcidid></search><sort><creationdate>20230202</creationdate><title>Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms</title><author>Kuai, Dacheng ; Balbuena, Perla B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-8dc9f01ce4ff6f0d161cea7f04971072279bd511b1a8087ca141f79d07f6a3983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Energy Conversion and Storage</topic><topic>degradation</topic><topic>electrolytes</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>lithium</topic><topic>metals</topic><topic>surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuai, Dacheng</creatorcontrib><creatorcontrib>Balbuena, Perla B.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuai, Dacheng</au><au>Balbuena, Perla B.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-02-02</date><risdate>2023</risdate><volume>127</volume><issue>4</issue><spage>1744</spage><epage>1751</epage><pages>1744-1751</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Solid electrolyte interphase (SEI) engineering is an efficient approach to enhancing the cycling performance of lithium metal batteries. Lithium hexafluorophosphate (LiPF6) is a popular electrolyte salt. Mechanistic insights into its degradation pathways near the lithium metal anode are critical in modifying the battery electrolyte and SEI. In this work, we elucidate plausible reaction pathways in multiple representative electrolyte systems. Through ab initio molecular dynamics simulations, lithiation and electron transfer are identified as the triggering factors for LiPF6 degradation. Meanwhile, we find that lithium morphology and charge distribution substantially impact the interfacial dissociation pathways. Thermodynamic evaluation of the solvation effects shows that higher electrolyte dielectric constant and lithiation extent profoundly assist the LiPF6 decomposition. These findings offer quantitative thermodynamic and electronic structure information, which promotes rational SEI engineering and electrolyte tuning for lithium metal anode performance enhancement.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38333544</pmid><doi>10.1021/acs.jpcc.2c07838</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2358-3910</orcidid><orcidid>https://orcid.org/0000-0002-4787-7331</orcidid><orcidid>https://orcid.org/0000000223583910</orcidid><orcidid>https://orcid.org/0000000247877331</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2023-02, Vol.127 (4), p.1744-1751
issn 1932-7447
1932-7455
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10848255
source American Chemical Society Journals
subjects C: Energy Conversion and Storage
degradation
electrolytes
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
lithium
metals
surface chemistry
title Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inorganic%20Solid%20Electrolyte%20Interphase%20Engineering%20Rationales%20Inspired%20by%20Hexafluorophosphate%20Decomposition%20Mechanisms&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kuai,%20Dacheng&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-02-02&rft.volume=127&rft.issue=4&rft.spage=1744&rft.epage=1751&rft.pages=1744-1751&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c07838&rft_dat=%3Cproquest_pubme%3E2925002883%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925002883&rft_id=info:pmid/38333544&rfr_iscdi=true