Point Cloud Registration for Measuring Shape Dependence of Soft Tissue Deformation by Digital Twins in Head and Neck Surgery

Abstract Introduction: A 2½ D point cloud registration method was developed to generate digital twins of different tissue shapes and resection cavities by applying a machine learning (ML) approach. This demonstrates the feasibility of quantifying soft tissue shifts. Methods: An ML model was trained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine Hub 2024-01, Vol.9 (1), p.9-15
Hauptverfasser: Monji-Azad, Sara, Männle, David, Hesser, Jürgen, Pohlmann, Jan, Rotter, Nicole, Affolter, Annette, Weis, Cleo Aron, Ludwig, Sonja, Scherl, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 9
container_title Biomedicine Hub
container_volume 9
creator Monji-Azad, Sara
Männle, David
Hesser, Jürgen
Pohlmann, Jan
Rotter, Nicole
Affolter, Annette
Weis, Cleo Aron
Ludwig, Sonja
Scherl, Claudia
description Abstract Introduction: A 2½ D point cloud registration method was developed to generate digital twins of different tissue shapes and resection cavities by applying a machine learning (ML) approach. This demonstrates the feasibility of quantifying soft tissue shifts. Methods: An ML model was trained using simulated surface scan data obtained from tumor resections in a pig head cadaver model. It hereby uses 438 2½ D scans of the tissue surface. Tissue shift was induced by a temperature change from 7.91 ± 4.1°C to 36.37 ± 1.28°C. Results: Digital twins were generated from various branched and compact resection cavities (RCs) and cut tissues (CT). A temperature increase induced a tissue shift with a significant volume increase of 6 mL and 2 mL in branched and compact RCs, respectively (p = 0.0443; 0.0157). The volumes of branched and compact CT were decreased by 3 and 4 mL (p < 0.001). In the warm state, RC and CT no longer fit together because of the significant tissue deformation. Although not significant, the compact RC showed a greater tissue deformation of 1 μL than the branched RC with 0.5 μL induced by the temperature change (p = 0.7874). The branched and compact CT forms responded almost equally to changes in temperature (p = 0.1461). Conclusions: The simulation experiment of induced soft tissue deformation using digital twins based on 2½ D point cloud models proved that our method helps to quantify shape-dependent tissue shifts.
doi_str_mv 10.1159/000535421
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10845096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A820531237</galeid><doaj_id>oai_doaj_org_article_0d62bf8c4c994c0ba3189f96c47cc268</doaj_id><sourcerecordid>A820531237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4311-a50343c2756eca7d5c510ccf5a2b464125cda49a168533aade027f8a7a6baf7f3</originalsourceid><addsrcrecordid>eNptkstvEzEQxlcIRKvSA3eELPUChxQ_9mGfUEmBVGoBkXC2Zv3Yut3Ywd4FReKPx2FL1CLkg62Z33z2jL-ieE7wKSGVeIMxrlhVUvKoOKRU1LOaN_jxvfNBcZzSTcYIpw2p2dPigHFGKS7JYfHrS3B-QPM-jBp9NZ1LQ4TBBY9siOjKQBqj8x1aXsPGoHOzMV4brwwKFi2DHdDKpTTuMplfT5XtFp27zg3Qo9VP5xNyHi0MaAReo09G3aLlGDsTt8-KJxb6ZI7v9qPi24f3q_lidvn548X87HKmSkbIDCrMSqZoU9VGQaMrVRGslK2AtmVdElopDaUAUvOKMQBtMG0shwbqFmxj2VFxMenqADdyE90a4lYGcPJPIMROQhyc6o3Euqat5apUQpQKt8AIF1bUqmyUojXPWm8nrc3Yro1WxueB9Q9EH2a8u5Zd-CEJ5mWFRZ0VXt0pxPB9NGmQa5eU6XvwJoxJUkEZow3lTUZP_kFvwhh9npVkuCaCMy5Epk4nqoPcgfM25ItVXtqsnQreWJfjZ5xmoxDKdrKvpwIVQ0rR2P3zCZY7U8m9qTL78n6_e_KvhTLwYgJuYfepe2Bff_Lf9LurxUTIjbbsN9MU2xU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061983899</pqid></control><display><type>article</type><title>Point Cloud Registration for Measuring Shape Dependence of Soft Tissue Deformation by Digital Twins in Head and Neck Surgery</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Karger Open Access</source><creator>Monji-Azad, Sara ; Männle, David ; Hesser, Jürgen ; Pohlmann, Jan ; Rotter, Nicole ; Affolter, Annette ; Weis, Cleo Aron ; Ludwig, Sonja ; Scherl, Claudia</creator><creatorcontrib>Monji-Azad, Sara ; Männle, David ; Hesser, Jürgen ; Pohlmann, Jan ; Rotter, Nicole ; Affolter, Annette ; Weis, Cleo Aron ; Ludwig, Sonja ; Scherl, Claudia</creatorcontrib><description>Abstract Introduction: A 2½ D point cloud registration method was developed to generate digital twins of different tissue shapes and resection cavities by applying a machine learning (ML) approach. This demonstrates the feasibility of quantifying soft tissue shifts. Methods: An ML model was trained using simulated surface scan data obtained from tumor resections in a pig head cadaver model. It hereby uses 438 2½ D scans of the tissue surface. Tissue shift was induced by a temperature change from 7.91 ± 4.1°C to 36.37 ± 1.28°C. Results: Digital twins were generated from various branched and compact resection cavities (RCs) and cut tissues (CT). A temperature increase induced a tissue shift with a significant volume increase of 6 mL and 2 mL in branched and compact RCs, respectively (p = 0.0443; 0.0157). The volumes of branched and compact CT were decreased by 3 and 4 mL (p &lt; 0.001). In the warm state, RC and CT no longer fit together because of the significant tissue deformation. Although not significant, the compact RC showed a greater tissue deformation of 1 μL than the branched RC with 0.5 μL induced by the temperature change (p = 0.7874). The branched and compact CT forms responded almost equally to changes in temperature (p = 0.1461). Conclusions: The simulation experiment of induced soft tissue deformation using digital twins based on 2½ D point cloud models proved that our method helps to quantify shape-dependent tissue shifts.</description><identifier>ISSN: 2296-6870</identifier><identifier>ISSN: 2296-6862</identifier><identifier>EISSN: 2296-6870</identifier><identifier>DOI: 10.1159/000535421</identifier><identifier>PMID: 38322041</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>artificial intelligence ; Cadavers ; Cameras ; Care and treatment ; Cold ; Computed tomography ; digital twin ; Digital twins ; Head and neck ; head and neck surgery ; Head and neck tumors ; Health aspects ; Machine learning ; Mathematical models ; Photogrammetry ; Physiological aspects ; point cloud registration ; Registration ; Research Article ; Sarcoma ; Soft tissues ; Software ; Surgery ; Temperature ; tissue shift</subject><ispartof>Biomedicine Hub, 2024-01, Vol.9 (1), p.9-15</ispartof><rights>2024 The Author(s). Published by S. Karger AG, Basel</rights><rights>2024 The Author(s). Published by S. Karger AG, Basel.</rights><rights>COPYRIGHT 2024 S. Karger AG</rights><rights>2024 The Author(s). Published by S. Karger AG, Basel. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content</rights><rights>2024 The Author(s). Published by S. Karger AG, Basel 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4311-a50343c2756eca7d5c510ccf5a2b464125cda49a168533aade027f8a7a6baf7f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845096/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845096/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27612,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38322041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monji-Azad, Sara</creatorcontrib><creatorcontrib>Männle, David</creatorcontrib><creatorcontrib>Hesser, Jürgen</creatorcontrib><creatorcontrib>Pohlmann, Jan</creatorcontrib><creatorcontrib>Rotter, Nicole</creatorcontrib><creatorcontrib>Affolter, Annette</creatorcontrib><creatorcontrib>Weis, Cleo Aron</creatorcontrib><creatorcontrib>Ludwig, Sonja</creatorcontrib><creatorcontrib>Scherl, Claudia</creatorcontrib><title>Point Cloud Registration for Measuring Shape Dependence of Soft Tissue Deformation by Digital Twins in Head and Neck Surgery</title><title>Biomedicine Hub</title><addtitle>Biomed Hub</addtitle><description>Abstract Introduction: A 2½ D point cloud registration method was developed to generate digital twins of different tissue shapes and resection cavities by applying a machine learning (ML) approach. This demonstrates the feasibility of quantifying soft tissue shifts. Methods: An ML model was trained using simulated surface scan data obtained from tumor resections in a pig head cadaver model. It hereby uses 438 2½ D scans of the tissue surface. Tissue shift was induced by a temperature change from 7.91 ± 4.1°C to 36.37 ± 1.28°C. Results: Digital twins were generated from various branched and compact resection cavities (RCs) and cut tissues (CT). A temperature increase induced a tissue shift with a significant volume increase of 6 mL and 2 mL in branched and compact RCs, respectively (p = 0.0443; 0.0157). The volumes of branched and compact CT were decreased by 3 and 4 mL (p &lt; 0.001). In the warm state, RC and CT no longer fit together because of the significant tissue deformation. Although not significant, the compact RC showed a greater tissue deformation of 1 μL than the branched RC with 0.5 μL induced by the temperature change (p = 0.7874). The branched and compact CT forms responded almost equally to changes in temperature (p = 0.1461). Conclusions: The simulation experiment of induced soft tissue deformation using digital twins based on 2½ D point cloud models proved that our method helps to quantify shape-dependent tissue shifts.</description><subject>artificial intelligence</subject><subject>Cadavers</subject><subject>Cameras</subject><subject>Care and treatment</subject><subject>Cold</subject><subject>Computed tomography</subject><subject>digital twin</subject><subject>Digital twins</subject><subject>Head and neck</subject><subject>head and neck surgery</subject><subject>Head and neck tumors</subject><subject>Health aspects</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Photogrammetry</subject><subject>Physiological aspects</subject><subject>point cloud registration</subject><subject>Registration</subject><subject>Research Article</subject><subject>Sarcoma</subject><subject>Soft tissues</subject><subject>Software</subject><subject>Surgery</subject><subject>Temperature</subject><subject>tissue shift</subject><issn>2296-6870</issn><issn>2296-6862</issn><issn>2296-6870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>M--</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkstvEzEQxlcIRKvSA3eELPUChxQ_9mGfUEmBVGoBkXC2Zv3Yut3Ywd4FReKPx2FL1CLkg62Z33z2jL-ieE7wKSGVeIMxrlhVUvKoOKRU1LOaN_jxvfNBcZzSTcYIpw2p2dPigHFGKS7JYfHrS3B-QPM-jBp9NZ1LQ4TBBY9siOjKQBqj8x1aXsPGoHOzMV4brwwKFi2DHdDKpTTuMplfT5XtFp27zg3Qo9VP5xNyHi0MaAReo09G3aLlGDsTt8-KJxb6ZI7v9qPi24f3q_lidvn548X87HKmSkbIDCrMSqZoU9VGQaMrVRGslK2AtmVdElopDaUAUvOKMQBtMG0shwbqFmxj2VFxMenqADdyE90a4lYGcPJPIMROQhyc6o3Euqat5apUQpQKt8AIF1bUqmyUojXPWm8nrc3Yro1WxueB9Q9EH2a8u5Zd-CEJ5mWFRZ0VXt0pxPB9NGmQa5eU6XvwJoxJUkEZow3lTUZP_kFvwhh9npVkuCaCMy5Epk4nqoPcgfM25ItVXtqsnQreWJfjZ5xmoxDKdrKvpwIVQ0rR2P3zCZY7U8m9qTL78n6_e_KvhTLwYgJuYfepe2Bff_Lf9LurxUTIjbbsN9MU2xU</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Monji-Azad, Sara</creator><creator>Männle, David</creator><creator>Hesser, Jürgen</creator><creator>Pohlmann, Jan</creator><creator>Rotter, Nicole</creator><creator>Affolter, Annette</creator><creator>Weis, Cleo Aron</creator><creator>Ludwig, Sonja</creator><creator>Scherl, Claudia</creator><general>S. Karger AG</general><general>Karger Publishers</general><scope>M--</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>202401</creationdate><title>Point Cloud Registration for Measuring Shape Dependence of Soft Tissue Deformation by Digital Twins in Head and Neck Surgery</title><author>Monji-Azad, Sara ; Männle, David ; Hesser, Jürgen ; Pohlmann, Jan ; Rotter, Nicole ; Affolter, Annette ; Weis, Cleo Aron ; Ludwig, Sonja ; Scherl, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4311-a50343c2756eca7d5c510ccf5a2b464125cda49a168533aade027f8a7a6baf7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>artificial intelligence</topic><topic>Cadavers</topic><topic>Cameras</topic><topic>Care and treatment</topic><topic>Cold</topic><topic>Computed tomography</topic><topic>digital twin</topic><topic>Digital twins</topic><topic>Head and neck</topic><topic>head and neck surgery</topic><topic>Head and neck tumors</topic><topic>Health aspects</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Photogrammetry</topic><topic>Physiological aspects</topic><topic>point cloud registration</topic><topic>Registration</topic><topic>Research Article</topic><topic>Sarcoma</topic><topic>Soft tissues</topic><topic>Software</topic><topic>Surgery</topic><topic>Temperature</topic><topic>tissue shift</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monji-Azad, Sara</creatorcontrib><creatorcontrib>Männle, David</creatorcontrib><creatorcontrib>Hesser, Jürgen</creatorcontrib><creatorcontrib>Pohlmann, Jan</creatorcontrib><creatorcontrib>Rotter, Nicole</creatorcontrib><creatorcontrib>Affolter, Annette</creatorcontrib><creatorcontrib>Weis, Cleo Aron</creatorcontrib><creatorcontrib>Ludwig, Sonja</creatorcontrib><creatorcontrib>Scherl, Claudia</creatorcontrib><collection>Karger Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomedicine Hub</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monji-Azad, Sara</au><au>Männle, David</au><au>Hesser, Jürgen</au><au>Pohlmann, Jan</au><au>Rotter, Nicole</au><au>Affolter, Annette</au><au>Weis, Cleo Aron</au><au>Ludwig, Sonja</au><au>Scherl, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point Cloud Registration for Measuring Shape Dependence of Soft Tissue Deformation by Digital Twins in Head and Neck Surgery</atitle><jtitle>Biomedicine Hub</jtitle><addtitle>Biomed Hub</addtitle><date>2024-01</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>9</spage><epage>15</epage><pages>9-15</pages><issn>2296-6870</issn><issn>2296-6862</issn><eissn>2296-6870</eissn><abstract>Abstract Introduction: A 2½ D point cloud registration method was developed to generate digital twins of different tissue shapes and resection cavities by applying a machine learning (ML) approach. This demonstrates the feasibility of quantifying soft tissue shifts. Methods: An ML model was trained using simulated surface scan data obtained from tumor resections in a pig head cadaver model. It hereby uses 438 2½ D scans of the tissue surface. Tissue shift was induced by a temperature change from 7.91 ± 4.1°C to 36.37 ± 1.28°C. Results: Digital twins were generated from various branched and compact resection cavities (RCs) and cut tissues (CT). A temperature increase induced a tissue shift with a significant volume increase of 6 mL and 2 mL in branched and compact RCs, respectively (p = 0.0443; 0.0157). The volumes of branched and compact CT were decreased by 3 and 4 mL (p &lt; 0.001). In the warm state, RC and CT no longer fit together because of the significant tissue deformation. Although not significant, the compact RC showed a greater tissue deformation of 1 μL than the branched RC with 0.5 μL induced by the temperature change (p = 0.7874). The branched and compact CT forms responded almost equally to changes in temperature (p = 0.1461). Conclusions: The simulation experiment of induced soft tissue deformation using digital twins based on 2½ D point cloud models proved that our method helps to quantify shape-dependent tissue shifts.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>38322041</pmid><doi>10.1159/000535421</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-6870
ispartof Biomedicine Hub, 2024-01, Vol.9 (1), p.9-15
issn 2296-6870
2296-6862
2296-6870
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10845096
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Karger Open Access
subjects artificial intelligence
Cadavers
Cameras
Care and treatment
Cold
Computed tomography
digital twin
Digital twins
Head and neck
head and neck surgery
Head and neck tumors
Health aspects
Machine learning
Mathematical models
Photogrammetry
Physiological aspects
point cloud registration
Registration
Research Article
Sarcoma
Soft tissues
Software
Surgery
Temperature
tissue shift
title Point Cloud Registration for Measuring Shape Dependence of Soft Tissue Deformation by Digital Twins in Head and Neck Surgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point%20Cloud%20Registration%20for%20Measuring%20Shape%20Dependence%20of%20Soft%20Tissue%20Deformation%20by%20Digital%20Twins%20in%20Head%20and%20Neck%20Surgery&rft.jtitle=Biomedicine%20Hub&rft.au=Monji-Azad,%20Sara&rft.date=2024-01&rft.volume=9&rft.issue=1&rft.spage=9&rft.epage=15&rft.pages=9-15&rft.issn=2296-6870&rft.eissn=2296-6870&rft_id=info:doi/10.1159/000535421&rft_dat=%3Cgale_pubme%3EA820531237%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061983899&rft_id=info:pmid/38322041&rft_galeid=A820531237&rft_doaj_id=oai_doaj_org_article_0d62bf8c4c994c0ba3189f96c47cc268&rfr_iscdi=true