Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis

The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials advances 2024-02, Vol.157, p.213726-213726, Article 213726
Hauptverfasser: Fumasi, Fallon M, MacCulloch, Tara, Bernal-Chanchavac, Julio, Stephanopoulos, Nicholas, Holloway, Julianne L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213726
container_issue
container_start_page 213726
container_title Biomaterials advances
container_volume 157
creator Fumasi, Fallon M
MacCulloch, Tara
Bernal-Chanchavac, Julio
Stephanopoulos, Nicholas
Holloway, Julianne L
description The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.
doi_str_mv 10.1016/j.bioadv.2023.213726
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10842892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902946236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-11be5e5b794ddaec60f0ce182fa70d329228c16bdc19805fc816001bb823a20a3</originalsourceid><addsrcrecordid>eNpVkcFq3DAQhkVoaUKaNyhBx152OxrZsnwqJbRNIdBLcxayNN5osS1Xkhf27etl05CcNKB_vhnmY-yTgK0Aob7st12I1h-2CCi3KGSD6oJdYdPgpq1Bv3tVX7KbnPcAIFGqupYf2KXU0CpVqStmHnOYdtwfJzsGx1fqaAulYIfMS-S5LP7IyxPxQuMckx14igPx2J-i1pVwID7TXIKnzP2STrCYC8UdTZRD_sje9yuLbp7fa_b44_ufu_vNw--fv-6-PWycVLJshOioprpr2sp7S05BD46Ext424CW2iNoJ1XknWg1177RQAKLrNEqLYOU1-3rmzks3knc0lXVZM6cw2nQ00Qbz9mcKT2YXD0aArlC3uBI-PxNS_LtQLmYM2dEw2Inikg22gG2l1huu0eocdSnmnKh_mSPAnPyYvTn7MSc_5uxnbbt9veNL038b8h9o8ZCa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902946236</pqid></control><display><type>article</type><title>Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Fumasi, Fallon M ; MacCulloch, Tara ; Bernal-Chanchavac, Julio ; Stephanopoulos, Nicholas ; Holloway, Julianne L</creator><creatorcontrib>Fumasi, Fallon M ; MacCulloch, Tara ; Bernal-Chanchavac, Julio ; Stephanopoulos, Nicholas ; Holloway, Julianne L</creatorcontrib><description>The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.</description><identifier>ISSN: 2772-9508</identifier><identifier>ISSN: 2772-9516</identifier><identifier>EISSN: 2772-9508</identifier><identifier>DOI: 10.1016/j.bioadv.2023.213726</identifier><identifier>PMID: 38096646</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Biocompatible Materials ; Disease Progression ; DNA ; Humans ; Hyaluronic Acid - chemistry ; Hydrogels ; Osteogenesis ; Peptides - chemistry</subject><ispartof>Biomaterials advances, 2024-02, Vol.157, p.213726-213726, Article 213726</ispartof><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-11be5e5b794ddaec60f0ce182fa70d329228c16bdc19805fc816001bb823a20a3</citedby><cites>FETCH-LOGICAL-c363t-11be5e5b794ddaec60f0ce182fa70d329228c16bdc19805fc816001bb823a20a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38096646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fumasi, Fallon M</creatorcontrib><creatorcontrib>MacCulloch, Tara</creatorcontrib><creatorcontrib>Bernal-Chanchavac, Julio</creatorcontrib><creatorcontrib>Stephanopoulos, Nicholas</creatorcontrib><creatorcontrib>Holloway, Julianne L</creatorcontrib><title>Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis</title><title>Biomaterials advances</title><addtitle>Biomater Adv</addtitle><description>The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.</description><subject>Biocompatible Materials</subject><subject>Disease Progression</subject><subject>DNA</subject><subject>Humans</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Hydrogels</subject><subject>Osteogenesis</subject><subject>Peptides - chemistry</subject><issn>2772-9508</issn><issn>2772-9516</issn><issn>2772-9508</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkcFq3DAQhkVoaUKaNyhBx152OxrZsnwqJbRNIdBLcxayNN5osS1Xkhf27etl05CcNKB_vhnmY-yTgK0Aob7st12I1h-2CCi3KGSD6oJdYdPgpq1Bv3tVX7KbnPcAIFGqupYf2KXU0CpVqStmHnOYdtwfJzsGx1fqaAulYIfMS-S5LP7IyxPxQuMckx14igPx2J-i1pVwID7TXIKnzP2STrCYC8UdTZRD_sje9yuLbp7fa_b44_ufu_vNw--fv-6-PWycVLJshOioprpr2sp7S05BD46Ext424CW2iNoJ1XknWg1177RQAKLrNEqLYOU1-3rmzks3knc0lXVZM6cw2nQ00Qbz9mcKT2YXD0aArlC3uBI-PxNS_LtQLmYM2dEw2Inikg22gG2l1huu0eocdSnmnKh_mSPAnPyYvTn7MSc_5uxnbbt9veNL038b8h9o8ZCa</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Fumasi, Fallon M</creator><creator>MacCulloch, Tara</creator><creator>Bernal-Chanchavac, Julio</creator><creator>Stephanopoulos, Nicholas</creator><creator>Holloway, Julianne L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240201</creationdate><title>Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis</title><author>Fumasi, Fallon M ; MacCulloch, Tara ; Bernal-Chanchavac, Julio ; Stephanopoulos, Nicholas ; Holloway, Julianne L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-11be5e5b794ddaec60f0ce182fa70d329228c16bdc19805fc816001bb823a20a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatible Materials</topic><topic>Disease Progression</topic><topic>DNA</topic><topic>Humans</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Hydrogels</topic><topic>Osteogenesis</topic><topic>Peptides - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fumasi, Fallon M</creatorcontrib><creatorcontrib>MacCulloch, Tara</creatorcontrib><creatorcontrib>Bernal-Chanchavac, Julio</creatorcontrib><creatorcontrib>Stephanopoulos, Nicholas</creatorcontrib><creatorcontrib>Holloway, Julianne L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fumasi, Fallon M</au><au>MacCulloch, Tara</au><au>Bernal-Chanchavac, Julio</au><au>Stephanopoulos, Nicholas</au><au>Holloway, Julianne L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis</atitle><jtitle>Biomaterials advances</jtitle><addtitle>Biomater Adv</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>157</volume><spage>213726</spage><epage>213726</epage><pages>213726-213726</pages><artnum>213726</artnum><issn>2772-9508</issn><issn>2772-9516</issn><eissn>2772-9508</eissn><abstract>The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.</abstract><cop>Netherlands</cop><pmid>38096646</pmid><doi>10.1016/j.bioadv.2023.213726</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2772-9508
ispartof Biomaterials advances, 2024-02, Vol.157, p.213726-213726, Article 213726
issn 2772-9508
2772-9516
2772-9508
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10842892
source MEDLINE; Alma/SFX Local Collection
subjects Biocompatible Materials
Disease Progression
DNA
Humans
Hyaluronic Acid - chemistry
Hydrogels
Osteogenesis
Peptides - chemistry
title Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20dynamic%20biomaterials%20to%20study%20the%20temporal%20role%20of%20bioactive%20peptides%20during%20osteogenesis&rft.jtitle=Biomaterials%20advances&rft.au=Fumasi,%20Fallon%20M&rft.date=2024-02-01&rft.volume=157&rft.spage=213726&rft.epage=213726&rft.pages=213726-213726&rft.artnum=213726&rft.issn=2772-9508&rft.eissn=2772-9508&rft_id=info:doi/10.1016/j.bioadv.2023.213726&rft_dat=%3Cproquest_pubme%3E2902946236%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902946236&rft_id=info:pmid/38096646&rfr_iscdi=true