Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis
The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable i...
Gespeichert in:
Veröffentlicht in: | Biomaterials advances 2024-02, Vol.157, p.213726-213726, Article 213726 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213726 |
---|---|
container_issue | |
container_start_page | 213726 |
container_title | Biomaterials advances |
container_volume | 157 |
creator | Fumasi, Fallon M MacCulloch, Tara Bernal-Chanchavac, Julio Stephanopoulos, Nicholas Holloway, Julianne L |
description | The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression. |
doi_str_mv | 10.1016/j.bioadv.2023.213726 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10842892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902946236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-11be5e5b794ddaec60f0ce182fa70d329228c16bdc19805fc816001bb823a20a3</originalsourceid><addsrcrecordid>eNpVkcFq3DAQhkVoaUKaNyhBx152OxrZsnwqJbRNIdBLcxayNN5osS1Xkhf27etl05CcNKB_vhnmY-yTgK0Aob7st12I1h-2CCi3KGSD6oJdYdPgpq1Bv3tVX7KbnPcAIFGqupYf2KXU0CpVqStmHnOYdtwfJzsGx1fqaAulYIfMS-S5LP7IyxPxQuMckx14igPx2J-i1pVwID7TXIKnzP2STrCYC8UdTZRD_sje9yuLbp7fa_b44_ufu_vNw--fv-6-PWycVLJshOioprpr2sp7S05BD46Ext424CW2iNoJ1XknWg1177RQAKLrNEqLYOU1-3rmzks3knc0lXVZM6cw2nQ00Qbz9mcKT2YXD0aArlC3uBI-PxNS_LtQLmYM2dEw2Inikg22gG2l1huu0eocdSnmnKh_mSPAnPyYvTn7MSc_5uxnbbt9veNL038b8h9o8ZCa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902946236</pqid></control><display><type>article</type><title>Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Fumasi, Fallon M ; MacCulloch, Tara ; Bernal-Chanchavac, Julio ; Stephanopoulos, Nicholas ; Holloway, Julianne L</creator><creatorcontrib>Fumasi, Fallon M ; MacCulloch, Tara ; Bernal-Chanchavac, Julio ; Stephanopoulos, Nicholas ; Holloway, Julianne L</creatorcontrib><description>The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.</description><identifier>ISSN: 2772-9508</identifier><identifier>ISSN: 2772-9516</identifier><identifier>EISSN: 2772-9508</identifier><identifier>DOI: 10.1016/j.bioadv.2023.213726</identifier><identifier>PMID: 38096646</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Biocompatible Materials ; Disease Progression ; DNA ; Humans ; Hyaluronic Acid - chemistry ; Hydrogels ; Osteogenesis ; Peptides - chemistry</subject><ispartof>Biomaterials advances, 2024-02, Vol.157, p.213726-213726, Article 213726</ispartof><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-11be5e5b794ddaec60f0ce182fa70d329228c16bdc19805fc816001bb823a20a3</citedby><cites>FETCH-LOGICAL-c363t-11be5e5b794ddaec60f0ce182fa70d329228c16bdc19805fc816001bb823a20a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38096646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fumasi, Fallon M</creatorcontrib><creatorcontrib>MacCulloch, Tara</creatorcontrib><creatorcontrib>Bernal-Chanchavac, Julio</creatorcontrib><creatorcontrib>Stephanopoulos, Nicholas</creatorcontrib><creatorcontrib>Holloway, Julianne L</creatorcontrib><title>Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis</title><title>Biomaterials advances</title><addtitle>Biomater Adv</addtitle><description>The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.</description><subject>Biocompatible Materials</subject><subject>Disease Progression</subject><subject>DNA</subject><subject>Humans</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Hydrogels</subject><subject>Osteogenesis</subject><subject>Peptides - chemistry</subject><issn>2772-9508</issn><issn>2772-9516</issn><issn>2772-9508</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkcFq3DAQhkVoaUKaNyhBx152OxrZsnwqJbRNIdBLcxayNN5osS1Xkhf27etl05CcNKB_vhnmY-yTgK0Aob7st12I1h-2CCi3KGSD6oJdYdPgpq1Bv3tVX7KbnPcAIFGqupYf2KXU0CpVqStmHnOYdtwfJzsGx1fqaAulYIfMS-S5LP7IyxPxQuMckx14igPx2J-i1pVwID7TXIKnzP2STrCYC8UdTZRD_sje9yuLbp7fa_b44_ufu_vNw--fv-6-PWycVLJshOioprpr2sp7S05BD46Ext424CW2iNoJ1XknWg1177RQAKLrNEqLYOU1-3rmzks3knc0lXVZM6cw2nQ00Qbz9mcKT2YXD0aArlC3uBI-PxNS_LtQLmYM2dEw2Inikg22gG2l1huu0eocdSnmnKh_mSPAnPyYvTn7MSc_5uxnbbt9veNL038b8h9o8ZCa</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Fumasi, Fallon M</creator><creator>MacCulloch, Tara</creator><creator>Bernal-Chanchavac, Julio</creator><creator>Stephanopoulos, Nicholas</creator><creator>Holloway, Julianne L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240201</creationdate><title>Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis</title><author>Fumasi, Fallon M ; MacCulloch, Tara ; Bernal-Chanchavac, Julio ; Stephanopoulos, Nicholas ; Holloway, Julianne L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-11be5e5b794ddaec60f0ce182fa70d329228c16bdc19805fc816001bb823a20a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatible Materials</topic><topic>Disease Progression</topic><topic>DNA</topic><topic>Humans</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Hydrogels</topic><topic>Osteogenesis</topic><topic>Peptides - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fumasi, Fallon M</creatorcontrib><creatorcontrib>MacCulloch, Tara</creatorcontrib><creatorcontrib>Bernal-Chanchavac, Julio</creatorcontrib><creatorcontrib>Stephanopoulos, Nicholas</creatorcontrib><creatorcontrib>Holloway, Julianne L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fumasi, Fallon M</au><au>MacCulloch, Tara</au><au>Bernal-Chanchavac, Julio</au><au>Stephanopoulos, Nicholas</au><au>Holloway, Julianne L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis</atitle><jtitle>Biomaterials advances</jtitle><addtitle>Biomater Adv</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>157</volume><spage>213726</spage><epage>213726</epage><pages>213726-213726</pages><artnum>213726</artnum><issn>2772-9508</issn><issn>2772-9516</issn><eissn>2772-9508</eissn><abstract>The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.</abstract><cop>Netherlands</cop><pmid>38096646</pmid><doi>10.1016/j.bioadv.2023.213726</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2772-9508 |
ispartof | Biomaterials advances, 2024-02, Vol.157, p.213726-213726, Article 213726 |
issn | 2772-9508 2772-9516 2772-9508 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10842892 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Biocompatible Materials Disease Progression DNA Humans Hyaluronic Acid - chemistry Hydrogels Osteogenesis Peptides - chemistry |
title | Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20dynamic%20biomaterials%20to%20study%20the%20temporal%20role%20of%20bioactive%20peptides%20during%20osteogenesis&rft.jtitle=Biomaterials%20advances&rft.au=Fumasi,%20Fallon%20M&rft.date=2024-02-01&rft.volume=157&rft.spage=213726&rft.epage=213726&rft.pages=213726-213726&rft.artnum=213726&rft.issn=2772-9508&rft.eissn=2772-9508&rft_id=info:doi/10.1016/j.bioadv.2023.213726&rft_dat=%3Cproquest_pubme%3E2902946236%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902946236&rft_id=info:pmid/38096646&rfr_iscdi=true |