Novel Clinical Trial Designs with Dose Optimization to Improve Long-term Outcomes

Conventional designs for choosing a dose for a new therapy may select doses that are unsafe or ineffective and fail to optimize progression-free survival time, overall survival time, or response/remission duration. We explain and illustrate limitations of conventional dose-finding designs and make f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2023-11, Vol.29 (22), p.4549-4554
Hauptverfasser: Thall, Peter F, Zang, Yong, Chapple, Andrew G, Yuan, Ying, Lin, Ruitao, Marin, David, Msaouel, Pavlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4554
container_issue 22
container_start_page 4549
container_title Clinical cancer research
container_volume 29
creator Thall, Peter F
Zang, Yong
Chapple, Andrew G
Yuan, Ying
Lin, Ruitao
Marin, David
Msaouel, Pavlos
description Conventional designs for choosing a dose for a new therapy may select doses that are unsafe or ineffective and fail to optimize progression-free survival time, overall survival time, or response/remission duration. We explain and illustrate limitations of conventional dose-finding designs and make four recommendations to address these problems. When feasible, a dose-finding design should account for long-term outcomes, include screening rules that drop unsafe or ineffective doses, enroll an adequate sample size, and randomize patients among doses. As illustrations, we review three designs that include one or more of these features. The first illustration is a trial that randomized patients among two cell therapy doses and standard of care in a setting where it was assumed on biological grounds that dose toxicity and dose-response curves did not necessarily increase with cell dose. The second design generalizes phase I-II by first identifying a set of candidate doses, rather than one dose, randomizing additional patients among the candidates, and selecting an optimal dose to maximize progression-free survival over a longer follow-up period. The third design combines a phase I-II trial and a group sequential randomized phase III trial by using survival time data available after the first stage of phase III to reoptimize the dose selected in phase I-II. By incorporating one or more of the recommended features, these designs improve the likelihood that a selected dose or schedule will be optimal, and thus will benefit future patients and obtain regulatory approval.
doi_str_mv 10.1158/1078-0432.CCR-23-2222
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10841062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866759740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-785b578ab6945d9094730603bcba66a55b1de79126ac96cd05a1cf844daf93fa3</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCIR-ETQD5ySfEjtpMTQuFVqaICwdlyHKc1SuJiuyD4elwVKtjDrqWdmbVmADjFaIwxKy4wEkWGckrGVfWUEZqRVDvgEDMmMko4203vX8wBOArhFSGcY5TvgwMqBEk4eggeH9y76WDV2cFq1cFnb1O_NsHOhwA_bFzAaxcMnC2j7e2XitYNMDo46Zc-MeHUDfMsGt_D2Spq15twDPZa1QVz8jNH4OX25rm6z6azu0l1Nc005SxmomA1E4WqeZmzpkRlLijiiNa6VpwrxmrcGFFiwpUuuW4QU1i3RZ43qi1pq-gIXG50l6u6N402Q_Sqk0tve-U_pVNW_t8MdiHn7l1iVCQbOEkK5z8K3r2tTIiyt0GbrlODcasgScG5YKXIUYKyDVR7F4I37fYORnKdh1x7Lddey5SHJFSu80i8s7-f3LJ-A6Df7HeHiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866759740</pqid></control><display><type>article</type><title>Novel Clinical Trial Designs with Dose Optimization to Improve Long-term Outcomes</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Thall, Peter F ; Zang, Yong ; Chapple, Andrew G ; Yuan, Ying ; Lin, Ruitao ; Marin, David ; Msaouel, Pavlos</creator><creatorcontrib>Thall, Peter F ; Zang, Yong ; Chapple, Andrew G ; Yuan, Ying ; Lin, Ruitao ; Marin, David ; Msaouel, Pavlos</creatorcontrib><description>Conventional designs for choosing a dose for a new therapy may select doses that are unsafe or ineffective and fail to optimize progression-free survival time, overall survival time, or response/remission duration. We explain and illustrate limitations of conventional dose-finding designs and make four recommendations to address these problems. When feasible, a dose-finding design should account for long-term outcomes, include screening rules that drop unsafe or ineffective doses, enroll an adequate sample size, and randomize patients among doses. As illustrations, we review three designs that include one or more of these features. The first illustration is a trial that randomized patients among two cell therapy doses and standard of care in a setting where it was assumed on biological grounds that dose toxicity and dose-response curves did not necessarily increase with cell dose. The second design generalizes phase I-II by first identifying a set of candidate doses, rather than one dose, randomizing additional patients among the candidates, and selecting an optimal dose to maximize progression-free survival over a longer follow-up period. The third design combines a phase I-II trial and a group sequential randomized phase III trial by using survival time data available after the first stage of phase III to reoptimize the dose selected in phase I-II. By incorporating one or more of the recommended features, these designs improve the likelihood that a selected dose or schedule will be optimal, and thus will benefit future patients and obtain regulatory approval.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-23-2222</identifier><identifier>PMID: 37725573</identifier><language>eng</language><publisher>United States</publisher><subject>Clinical Trials as Topic ; Clinical Trials, Phase III as Topic ; Humans ; Probability ; Randomized Controlled Trials as Topic ; Research Design</subject><ispartof>Clinical cancer research, 2023-11, Vol.29 (22), p.4549-4554</ispartof><rights>2023 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-785b578ab6945d9094730603bcba66a55b1de79126ac96cd05a1cf844daf93fa3</citedby><cites>FETCH-LOGICAL-c365t-785b578ab6945d9094730603bcba66a55b1de79126ac96cd05a1cf844daf93fa3</cites><orcidid>0000-0003-2244-131X ; 0000-0003-3163-480X ; 0000-0001-5332-2730 ; 0000-0003-0572-4756 ; 0000-0001-6505-8308 ; 0000-0002-7293-529X ; 0000-0003-0812-9346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37725573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thall, Peter F</creatorcontrib><creatorcontrib>Zang, Yong</creatorcontrib><creatorcontrib>Chapple, Andrew G</creatorcontrib><creatorcontrib>Yuan, Ying</creatorcontrib><creatorcontrib>Lin, Ruitao</creatorcontrib><creatorcontrib>Marin, David</creatorcontrib><creatorcontrib>Msaouel, Pavlos</creatorcontrib><title>Novel Clinical Trial Designs with Dose Optimization to Improve Long-term Outcomes</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>Conventional designs for choosing a dose for a new therapy may select doses that are unsafe or ineffective and fail to optimize progression-free survival time, overall survival time, or response/remission duration. We explain and illustrate limitations of conventional dose-finding designs and make four recommendations to address these problems. When feasible, a dose-finding design should account for long-term outcomes, include screening rules that drop unsafe or ineffective doses, enroll an adequate sample size, and randomize patients among doses. As illustrations, we review three designs that include one or more of these features. The first illustration is a trial that randomized patients among two cell therapy doses and standard of care in a setting where it was assumed on biological grounds that dose toxicity and dose-response curves did not necessarily increase with cell dose. The second design generalizes phase I-II by first identifying a set of candidate doses, rather than one dose, randomizing additional patients among the candidates, and selecting an optimal dose to maximize progression-free survival over a longer follow-up period. The third design combines a phase I-II trial and a group sequential randomized phase III trial by using survival time data available after the first stage of phase III to reoptimize the dose selected in phase I-II. By incorporating one or more of the recommended features, these designs improve the likelihood that a selected dose or schedule will be optimal, and thus will benefit future patients and obtain regulatory approval.</description><subject>Clinical Trials as Topic</subject><subject>Clinical Trials, Phase III as Topic</subject><subject>Humans</subject><subject>Probability</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Research Design</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctOwzAQtBCIR-ETQD5ySfEjtpMTQuFVqaICwdlyHKc1SuJiuyD4elwVKtjDrqWdmbVmADjFaIwxKy4wEkWGckrGVfWUEZqRVDvgEDMmMko4203vX8wBOArhFSGcY5TvgwMqBEk4eggeH9y76WDV2cFq1cFnb1O_NsHOhwA_bFzAaxcMnC2j7e2XitYNMDo46Zc-MeHUDfMsGt_D2Spq15twDPZa1QVz8jNH4OX25rm6z6azu0l1Nc005SxmomA1E4WqeZmzpkRlLijiiNa6VpwrxmrcGFFiwpUuuW4QU1i3RZ43qi1pq-gIXG50l6u6N402Q_Sqk0tve-U_pVNW_t8MdiHn7l1iVCQbOEkK5z8K3r2tTIiyt0GbrlODcasgScG5YKXIUYKyDVR7F4I37fYORnKdh1x7Lddey5SHJFSu80i8s7-f3LJ-A6Df7HeHiQ</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Thall, Peter F</creator><creator>Zang, Yong</creator><creator>Chapple, Andrew G</creator><creator>Yuan, Ying</creator><creator>Lin, Ruitao</creator><creator>Marin, David</creator><creator>Msaouel, Pavlos</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2244-131X</orcidid><orcidid>https://orcid.org/0000-0003-3163-480X</orcidid><orcidid>https://orcid.org/0000-0001-5332-2730</orcidid><orcidid>https://orcid.org/0000-0003-0572-4756</orcidid><orcidid>https://orcid.org/0000-0001-6505-8308</orcidid><orcidid>https://orcid.org/0000-0002-7293-529X</orcidid><orcidid>https://orcid.org/0000-0003-0812-9346</orcidid></search><sort><creationdate>20231114</creationdate><title>Novel Clinical Trial Designs with Dose Optimization to Improve Long-term Outcomes</title><author>Thall, Peter F ; Zang, Yong ; Chapple, Andrew G ; Yuan, Ying ; Lin, Ruitao ; Marin, David ; Msaouel, Pavlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-785b578ab6945d9094730603bcba66a55b1de79126ac96cd05a1cf844daf93fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clinical Trials as Topic</topic><topic>Clinical Trials, Phase III as Topic</topic><topic>Humans</topic><topic>Probability</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thall, Peter F</creatorcontrib><creatorcontrib>Zang, Yong</creatorcontrib><creatorcontrib>Chapple, Andrew G</creatorcontrib><creatorcontrib>Yuan, Ying</creatorcontrib><creatorcontrib>Lin, Ruitao</creatorcontrib><creatorcontrib>Marin, David</creatorcontrib><creatorcontrib>Msaouel, Pavlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thall, Peter F</au><au>Zang, Yong</au><au>Chapple, Andrew G</au><au>Yuan, Ying</au><au>Lin, Ruitao</au><au>Marin, David</au><au>Msaouel, Pavlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Clinical Trial Designs with Dose Optimization to Improve Long-term Outcomes</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2023-11-14</date><risdate>2023</risdate><volume>29</volume><issue>22</issue><spage>4549</spage><epage>4554</epage><pages>4549-4554</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>Conventional designs for choosing a dose for a new therapy may select doses that are unsafe or ineffective and fail to optimize progression-free survival time, overall survival time, or response/remission duration. We explain and illustrate limitations of conventional dose-finding designs and make four recommendations to address these problems. When feasible, a dose-finding design should account for long-term outcomes, include screening rules that drop unsafe or ineffective doses, enroll an adequate sample size, and randomize patients among doses. As illustrations, we review three designs that include one or more of these features. The first illustration is a trial that randomized patients among two cell therapy doses and standard of care in a setting where it was assumed on biological grounds that dose toxicity and dose-response curves did not necessarily increase with cell dose. The second design generalizes phase I-II by first identifying a set of candidate doses, rather than one dose, randomizing additional patients among the candidates, and selecting an optimal dose to maximize progression-free survival over a longer follow-up period. The third design combines a phase I-II trial and a group sequential randomized phase III trial by using survival time data available after the first stage of phase III to reoptimize the dose selected in phase I-II. By incorporating one or more of the recommended features, these designs improve the likelihood that a selected dose or schedule will be optimal, and thus will benefit future patients and obtain regulatory approval.</abstract><cop>United States</cop><pmid>37725573</pmid><doi>10.1158/1078-0432.CCR-23-2222</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2244-131X</orcidid><orcidid>https://orcid.org/0000-0003-3163-480X</orcidid><orcidid>https://orcid.org/0000-0001-5332-2730</orcidid><orcidid>https://orcid.org/0000-0003-0572-4756</orcidid><orcidid>https://orcid.org/0000-0001-6505-8308</orcidid><orcidid>https://orcid.org/0000-0002-7293-529X</orcidid><orcidid>https://orcid.org/0000-0003-0812-9346</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2023-11, Vol.29 (22), p.4549-4554
issn 1078-0432
1557-3265
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10841062
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Clinical Trials as Topic
Clinical Trials, Phase III as Topic
Humans
Probability
Randomized Controlled Trials as Topic
Research Design
title Novel Clinical Trial Designs with Dose Optimization to Improve Long-term Outcomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Clinical%20Trial%20Designs%20with%20Dose%20Optimization%20to%20Improve%20Long-term%20Outcomes&rft.jtitle=Clinical%20cancer%20research&rft.au=Thall,%20Peter%20F&rft.date=2023-11-14&rft.volume=29&rft.issue=22&rft.spage=4549&rft.epage=4554&rft.pages=4549-4554&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-23-2222&rft_dat=%3Cproquest_pubme%3E2866759740%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866759740&rft_id=info:pmid/37725573&rfr_iscdi=true