Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma
Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is...
Gespeichert in:
Veröffentlicht in: | Modern pathology 2023-12, Vol.36 (12), p.100326-100326, Article 100326 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100326 |
---|---|
container_issue | 12 |
container_start_page | 100326 |
container_title | Modern pathology |
container_volume | 36 |
creator | Chen, Pingjun Rojas, Frank R. Hu, Xin Serrano, Alejandra Zhu, Bo Chen, Hong Hong, Lingzhi Bandyoyadhyay, Rukhmini Aminu, Muhammad Kalhor, Neda Lee, J. Jack El Hussein, Siba Khoury, Joseph D. Pass, Harvey I. Moreira, Andre L. Velcheti, Vamsidhar Sterman, Daniel H. Fukuoka, Junya Tabata, Kazuhiro Su, Dan Ying, Lisha Gibbons, Don L. Heymach, John V. Wistuba, Ignacio I. Fujimoto, Junya Solis Soto, Luisa M. Zhang, Jianjun Wu, Jia |
description | Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is the most common histologic subtype of lung cancer, and atypical adenomatous hyperplasia is the only recognized preneoplasia to ADC, which may progress to adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and eventually to invasive ADC. Although molecular evolution during early lung carcinogenesis has been explored in recent years, the progress has been significantly hindered, largely due to insufficient materials from ADC precursors. Here, we employed state-of-the-art deep learning and artificial intelligence techniques to robustly segment and recognize cells on routinely used hematoxylin and eosin histopathology images and extracted 9 biology-relevant pathomic features to decode lung preneoplasia evolution. We analyzed 3 distinct cohorts (Japan, China, and United States) covering 98 patients, 162 slides, and 669 regions of interest, including 143 normal, 129 atypical adenomatous hyperplasia, 94 AIS, 98 MIA, and 205 ADC. Extracted pathomic features revealed progressive increase of atypical epithelial cells and progressive decrease of lymphocytic cells from normal to AAH, AIS, MIA, and ADC, consistent with the results from tissue-consuming and expensive molecular/immune profiling. Furthermore, pathomics analysis manifested progressively increasing cellular intratumor heterogeneity along with the evolution from normal lung to invasive ADC. These findings demonstrated the feasibility and substantial potential of pathomics in studying lung cancer carcinogenesis directly from the low-cost routine hematoxylin and eosin staining. |
doi_str_mv | 10.1016/j.modpat.2023.100326 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10841057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893395223002314</els_id><sourcerecordid>2863298130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-5a6fd8131ddc2dfaad5c59a26bf820ae2caf578f4e1657ad1f8308080bada4973</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvpP0DIRy5Z_BEnzgVUVV1YaREVomdr1p60XiX2YieR-u_JKqWil8oHWzPvvDPjh5APnK0549Xnw7qP7gjDWjAh5xCTonpFVlxJVjCh1WuyYrqRhWyUOCPvcj4wxkulxVtyJuuq1lVdroi_geE-9t7SDcIwJsz0F04IHd32_RiQQnD0R-zQjh0kej3Fbhx8DHSTYk93Y7ijNwkDxmMH2QMdIt2GaX5OSC8dhmghWR9iD-_Jmxa6jBeP9zm53Vz_vvpe7H5-215d7gpbVuVQKKhap7nkzlnhWgCnrGpAVPtWCwYoLLSq1m2JvFI1ON5qyfR89uCgbGp5Tr4uvsdx36OzGIYEnTkm30N6MBG8eZ4J_t7cxclwpkvO1Mnh06NDin9GzIPpfbbYdTDvOWYjdCVFM8_IZmm5SG2KOSdsn_pwZk6YzMEsmMwJk1kwzWUf_5_xqegfl1nwZRHg_FOTx2Sy9RgsOp_QDsZF_3KHv385qKs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863298130</pqid></control><display><type>article</type><title>Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><creator>Chen, Pingjun ; Rojas, Frank R. ; Hu, Xin ; Serrano, Alejandra ; Zhu, Bo ; Chen, Hong ; Hong, Lingzhi ; Bandyoyadhyay, Rukhmini ; Aminu, Muhammad ; Kalhor, Neda ; Lee, J. Jack ; El Hussein, Siba ; Khoury, Joseph D. ; Pass, Harvey I. ; Moreira, Andre L. ; Velcheti, Vamsidhar ; Sterman, Daniel H. ; Fukuoka, Junya ; Tabata, Kazuhiro ; Su, Dan ; Ying, Lisha ; Gibbons, Don L. ; Heymach, John V. ; Wistuba, Ignacio I. ; Fujimoto, Junya ; Solis Soto, Luisa M. ; Zhang, Jianjun ; Wu, Jia</creator><creatorcontrib>Chen, Pingjun ; Rojas, Frank R. ; Hu, Xin ; Serrano, Alejandra ; Zhu, Bo ; Chen, Hong ; Hong, Lingzhi ; Bandyoyadhyay, Rukhmini ; Aminu, Muhammad ; Kalhor, Neda ; Lee, J. Jack ; El Hussein, Siba ; Khoury, Joseph D. ; Pass, Harvey I. ; Moreira, Andre L. ; Velcheti, Vamsidhar ; Sterman, Daniel H. ; Fukuoka, Junya ; Tabata, Kazuhiro ; Su, Dan ; Ying, Lisha ; Gibbons, Don L. ; Heymach, John V. ; Wistuba, Ignacio I. ; Fujimoto, Junya ; Solis Soto, Luisa M. ; Zhang, Jianjun ; Wu, Jia</creatorcontrib><description>Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is the most common histologic subtype of lung cancer, and atypical adenomatous hyperplasia is the only recognized preneoplasia to ADC, which may progress to adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and eventually to invasive ADC. Although molecular evolution during early lung carcinogenesis has been explored in recent years, the progress has been significantly hindered, largely due to insufficient materials from ADC precursors. Here, we employed state-of-the-art deep learning and artificial intelligence techniques to robustly segment and recognize cells on routinely used hematoxylin and eosin histopathology images and extracted 9 biology-relevant pathomic features to decode lung preneoplasia evolution. We analyzed 3 distinct cohorts (Japan, China, and United States) covering 98 patients, 162 slides, and 669 regions of interest, including 143 normal, 129 atypical adenomatous hyperplasia, 94 AIS, 98 MIA, and 205 ADC. Extracted pathomic features revealed progressive increase of atypical epithelial cells and progressive decrease of lymphocytic cells from normal to AAH, AIS, MIA, and ADC, consistent with the results from tissue-consuming and expensive molecular/immune profiling. Furthermore, pathomics analysis manifested progressively increasing cellular intratumor heterogeneity along with the evolution from normal lung to invasive ADC. These findings demonstrated the feasibility and substantial potential of pathomics in studying lung cancer carcinogenesis directly from the low-cost routine hematoxylin and eosin staining.</description><identifier>ISSN: 0893-3952</identifier><identifier>ISSN: 1530-0285</identifier><identifier>EISSN: 1530-0285</identifier><identifier>DOI: 10.1016/j.modpat.2023.100326</identifier><identifier>PMID: 37678674</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenocarcinoma - genetics ; Adenocarcinoma - pathology ; Adenocarcinoma in Situ - genetics ; Adenocarcinoma in Situ - pathology ; Artificial Intelligence ; Carcinogenesis - pathology ; computational pathology ; deep learning ; Eosine Yellowish-(YS) ; Evolution, Molecular ; Hematoxylin ; Humans ; Hyperplasia - pathology ; Lung - pathology ; lung cancer ; Lung Neoplasms - genetics ; Lung Neoplasms - pathology ; pathomic features ; Precancerous Conditions - genetics ; Precancerous Conditions - pathology ; preneoplasia evolution ; tumor heterogeneity</subject><ispartof>Modern pathology, 2023-12, Vol.36 (12), p.100326-100326, Article 100326</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-5a6fd8131ddc2dfaad5c59a26bf820ae2caf578f4e1657ad1f8308080bada4973</citedby><cites>FETCH-LOGICAL-c464t-5a6fd8131ddc2dfaad5c59a26bf820ae2caf578f4e1657ad1f8308080bada4973</cites><orcidid>0000-0003-0528-1713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924,64386</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37678674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Pingjun</creatorcontrib><creatorcontrib>Rojas, Frank R.</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Serrano, Alejandra</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Hong, Lingzhi</creatorcontrib><creatorcontrib>Bandyoyadhyay, Rukhmini</creatorcontrib><creatorcontrib>Aminu, Muhammad</creatorcontrib><creatorcontrib>Kalhor, Neda</creatorcontrib><creatorcontrib>Lee, J. Jack</creatorcontrib><creatorcontrib>El Hussein, Siba</creatorcontrib><creatorcontrib>Khoury, Joseph D.</creatorcontrib><creatorcontrib>Pass, Harvey I.</creatorcontrib><creatorcontrib>Moreira, Andre L.</creatorcontrib><creatorcontrib>Velcheti, Vamsidhar</creatorcontrib><creatorcontrib>Sterman, Daniel H.</creatorcontrib><creatorcontrib>Fukuoka, Junya</creatorcontrib><creatorcontrib>Tabata, Kazuhiro</creatorcontrib><creatorcontrib>Su, Dan</creatorcontrib><creatorcontrib>Ying, Lisha</creatorcontrib><creatorcontrib>Gibbons, Don L.</creatorcontrib><creatorcontrib>Heymach, John V.</creatorcontrib><creatorcontrib>Wistuba, Ignacio I.</creatorcontrib><creatorcontrib>Fujimoto, Junya</creatorcontrib><creatorcontrib>Solis Soto, Luisa M.</creatorcontrib><creatorcontrib>Zhang, Jianjun</creatorcontrib><creatorcontrib>Wu, Jia</creatorcontrib><title>Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma</title><title>Modern pathology</title><addtitle>Mod Pathol</addtitle><description>Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is the most common histologic subtype of lung cancer, and atypical adenomatous hyperplasia is the only recognized preneoplasia to ADC, which may progress to adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and eventually to invasive ADC. Although molecular evolution during early lung carcinogenesis has been explored in recent years, the progress has been significantly hindered, largely due to insufficient materials from ADC precursors. Here, we employed state-of-the-art deep learning and artificial intelligence techniques to robustly segment and recognize cells on routinely used hematoxylin and eosin histopathology images and extracted 9 biology-relevant pathomic features to decode lung preneoplasia evolution. We analyzed 3 distinct cohorts (Japan, China, and United States) covering 98 patients, 162 slides, and 669 regions of interest, including 143 normal, 129 atypical adenomatous hyperplasia, 94 AIS, 98 MIA, and 205 ADC. Extracted pathomic features revealed progressive increase of atypical epithelial cells and progressive decrease of lymphocytic cells from normal to AAH, AIS, MIA, and ADC, consistent with the results from tissue-consuming and expensive molecular/immune profiling. Furthermore, pathomics analysis manifested progressively increasing cellular intratumor heterogeneity along with the evolution from normal lung to invasive ADC. These findings demonstrated the feasibility and substantial potential of pathomics in studying lung cancer carcinogenesis directly from the low-cost routine hematoxylin and eosin staining.</description><subject>Adenocarcinoma - genetics</subject><subject>Adenocarcinoma - pathology</subject><subject>Adenocarcinoma in Situ - genetics</subject><subject>Adenocarcinoma in Situ - pathology</subject><subject>Artificial Intelligence</subject><subject>Carcinogenesis - pathology</subject><subject>computational pathology</subject><subject>deep learning</subject><subject>Eosine Yellowish-(YS)</subject><subject>Evolution, Molecular</subject><subject>Hematoxylin</subject><subject>Humans</subject><subject>Hyperplasia - pathology</subject><subject>Lung - pathology</subject><subject>lung cancer</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - pathology</subject><subject>pathomic features</subject><subject>Precancerous Conditions - genetics</subject><subject>Precancerous Conditions - pathology</subject><subject>preneoplasia evolution</subject><subject>tumor heterogeneity</subject><issn>0893-3952</issn><issn>1530-0285</issn><issn>1530-0285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EokvpP0DIRy5Z_BEnzgVUVV1YaREVomdr1p60XiX2YieR-u_JKqWil8oHWzPvvDPjh5APnK0549Xnw7qP7gjDWjAh5xCTonpFVlxJVjCh1WuyYrqRhWyUOCPvcj4wxkulxVtyJuuq1lVdroi_geE-9t7SDcIwJsz0F04IHd32_RiQQnD0R-zQjh0kej3Fbhx8DHSTYk93Y7ijNwkDxmMH2QMdIt2GaX5OSC8dhmghWR9iD-_Jmxa6jBeP9zm53Vz_vvpe7H5-215d7gpbVuVQKKhap7nkzlnhWgCnrGpAVPtWCwYoLLSq1m2JvFI1ON5qyfR89uCgbGp5Tr4uvsdx36OzGIYEnTkm30N6MBG8eZ4J_t7cxclwpkvO1Mnh06NDin9GzIPpfbbYdTDvOWYjdCVFM8_IZmm5SG2KOSdsn_pwZk6YzMEsmMwJk1kwzWUf_5_xqegfl1nwZRHg_FOTx2Sy9RgsOp_QDsZF_3KHv385qKs</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Chen, Pingjun</creator><creator>Rojas, Frank R.</creator><creator>Hu, Xin</creator><creator>Serrano, Alejandra</creator><creator>Zhu, Bo</creator><creator>Chen, Hong</creator><creator>Hong, Lingzhi</creator><creator>Bandyoyadhyay, Rukhmini</creator><creator>Aminu, Muhammad</creator><creator>Kalhor, Neda</creator><creator>Lee, J. Jack</creator><creator>El Hussein, Siba</creator><creator>Khoury, Joseph D.</creator><creator>Pass, Harvey I.</creator><creator>Moreira, Andre L.</creator><creator>Velcheti, Vamsidhar</creator><creator>Sterman, Daniel H.</creator><creator>Fukuoka, Junya</creator><creator>Tabata, Kazuhiro</creator><creator>Su, Dan</creator><creator>Ying, Lisha</creator><creator>Gibbons, Don L.</creator><creator>Heymach, John V.</creator><creator>Wistuba, Ignacio I.</creator><creator>Fujimoto, Junya</creator><creator>Solis Soto, Luisa M.</creator><creator>Zhang, Jianjun</creator><creator>Wu, Jia</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0528-1713</orcidid></search><sort><creationdate>20231201</creationdate><title>Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma</title><author>Chen, Pingjun ; Rojas, Frank R. ; Hu, Xin ; Serrano, Alejandra ; Zhu, Bo ; Chen, Hong ; Hong, Lingzhi ; Bandyoyadhyay, Rukhmini ; Aminu, Muhammad ; Kalhor, Neda ; Lee, J. Jack ; El Hussein, Siba ; Khoury, Joseph D. ; Pass, Harvey I. ; Moreira, Andre L. ; Velcheti, Vamsidhar ; Sterman, Daniel H. ; Fukuoka, Junya ; Tabata, Kazuhiro ; Su, Dan ; Ying, Lisha ; Gibbons, Don L. ; Heymach, John V. ; Wistuba, Ignacio I. ; Fujimoto, Junya ; Solis Soto, Luisa M. ; Zhang, Jianjun ; Wu, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-5a6fd8131ddc2dfaad5c59a26bf820ae2caf578f4e1657ad1f8308080bada4973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenocarcinoma - genetics</topic><topic>Adenocarcinoma - pathology</topic><topic>Adenocarcinoma in Situ - genetics</topic><topic>Adenocarcinoma in Situ - pathology</topic><topic>Artificial Intelligence</topic><topic>Carcinogenesis - pathology</topic><topic>computational pathology</topic><topic>deep learning</topic><topic>Eosine Yellowish-(YS)</topic><topic>Evolution, Molecular</topic><topic>Hematoxylin</topic><topic>Humans</topic><topic>Hyperplasia - pathology</topic><topic>Lung - pathology</topic><topic>lung cancer</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - pathology</topic><topic>pathomic features</topic><topic>Precancerous Conditions - genetics</topic><topic>Precancerous Conditions - pathology</topic><topic>preneoplasia evolution</topic><topic>tumor heterogeneity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Pingjun</creatorcontrib><creatorcontrib>Rojas, Frank R.</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Serrano, Alejandra</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Hong, Lingzhi</creatorcontrib><creatorcontrib>Bandyoyadhyay, Rukhmini</creatorcontrib><creatorcontrib>Aminu, Muhammad</creatorcontrib><creatorcontrib>Kalhor, Neda</creatorcontrib><creatorcontrib>Lee, J. Jack</creatorcontrib><creatorcontrib>El Hussein, Siba</creatorcontrib><creatorcontrib>Khoury, Joseph D.</creatorcontrib><creatorcontrib>Pass, Harvey I.</creatorcontrib><creatorcontrib>Moreira, Andre L.</creatorcontrib><creatorcontrib>Velcheti, Vamsidhar</creatorcontrib><creatorcontrib>Sterman, Daniel H.</creatorcontrib><creatorcontrib>Fukuoka, Junya</creatorcontrib><creatorcontrib>Tabata, Kazuhiro</creatorcontrib><creatorcontrib>Su, Dan</creatorcontrib><creatorcontrib>Ying, Lisha</creatorcontrib><creatorcontrib>Gibbons, Don L.</creatorcontrib><creatorcontrib>Heymach, John V.</creatorcontrib><creatorcontrib>Wistuba, Ignacio I.</creatorcontrib><creatorcontrib>Fujimoto, Junya</creatorcontrib><creatorcontrib>Solis Soto, Luisa M.</creatorcontrib><creatorcontrib>Zhang, Jianjun</creatorcontrib><creatorcontrib>Wu, Jia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Modern pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Pingjun</au><au>Rojas, Frank R.</au><au>Hu, Xin</au><au>Serrano, Alejandra</au><au>Zhu, Bo</au><au>Chen, Hong</au><au>Hong, Lingzhi</au><au>Bandyoyadhyay, Rukhmini</au><au>Aminu, Muhammad</au><au>Kalhor, Neda</au><au>Lee, J. Jack</au><au>El Hussein, Siba</au><au>Khoury, Joseph D.</au><au>Pass, Harvey I.</au><au>Moreira, Andre L.</au><au>Velcheti, Vamsidhar</au><au>Sterman, Daniel H.</au><au>Fukuoka, Junya</au><au>Tabata, Kazuhiro</au><au>Su, Dan</au><au>Ying, Lisha</au><au>Gibbons, Don L.</au><au>Heymach, John V.</au><au>Wistuba, Ignacio I.</au><au>Fujimoto, Junya</au><au>Solis Soto, Luisa M.</au><au>Zhang, Jianjun</au><au>Wu, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma</atitle><jtitle>Modern pathology</jtitle><addtitle>Mod Pathol</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>36</volume><issue>12</issue><spage>100326</spage><epage>100326</epage><pages>100326-100326</pages><artnum>100326</artnum><issn>0893-3952</issn><issn>1530-0285</issn><eissn>1530-0285</eissn><abstract>Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is the most common histologic subtype of lung cancer, and atypical adenomatous hyperplasia is the only recognized preneoplasia to ADC, which may progress to adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and eventually to invasive ADC. Although molecular evolution during early lung carcinogenesis has been explored in recent years, the progress has been significantly hindered, largely due to insufficient materials from ADC precursors. Here, we employed state-of-the-art deep learning and artificial intelligence techniques to robustly segment and recognize cells on routinely used hematoxylin and eosin histopathology images and extracted 9 biology-relevant pathomic features to decode lung preneoplasia evolution. We analyzed 3 distinct cohorts (Japan, China, and United States) covering 98 patients, 162 slides, and 669 regions of interest, including 143 normal, 129 atypical adenomatous hyperplasia, 94 AIS, 98 MIA, and 205 ADC. Extracted pathomic features revealed progressive increase of atypical epithelial cells and progressive decrease of lymphocytic cells from normal to AAH, AIS, MIA, and ADC, consistent with the results from tissue-consuming and expensive molecular/immune profiling. Furthermore, pathomics analysis manifested progressively increasing cellular intratumor heterogeneity along with the evolution from normal lung to invasive ADC. These findings demonstrated the feasibility and substantial potential of pathomics in studying lung cancer carcinogenesis directly from the low-cost routine hematoxylin and eosin staining.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37678674</pmid><doi>10.1016/j.modpat.2023.100326</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0528-1713</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-3952 |
ispartof | Modern pathology, 2023-12, Vol.36 (12), p.100326-100326, Article 100326 |
issn | 0893-3952 1530-0285 1530-0285 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10841057 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection |
subjects | Adenocarcinoma - genetics Adenocarcinoma - pathology Adenocarcinoma in Situ - genetics Adenocarcinoma in Situ - pathology Artificial Intelligence Carcinogenesis - pathology computational pathology deep learning Eosine Yellowish-(YS) Evolution, Molecular Hematoxylin Humans Hyperplasia - pathology Lung - pathology lung cancer Lung Neoplasms - genetics Lung Neoplasms - pathology pathomic features Precancerous Conditions - genetics Precancerous Conditions - pathology preneoplasia evolution tumor heterogeneity |
title | Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathomic%20Features%20Reveal%20Immune%20and%20Molecular%20Evolution%20From%20Lung%20Preneoplasia%20to%20Invasive%20Adenocarcinoma&rft.jtitle=Modern%20pathology&rft.au=Chen,%20Pingjun&rft.date=2023-12-01&rft.volume=36&rft.issue=12&rft.spage=100326&rft.epage=100326&rft.pages=100326-100326&rft.artnum=100326&rft.issn=0893-3952&rft.eissn=1530-0285&rft_id=info:doi/10.1016/j.modpat.2023.100326&rft_dat=%3Cproquest_pubme%3E2863298130%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863298130&rft_id=info:pmid/37678674&rft_els_id=S0893395223002314&rfr_iscdi=true |