Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma

Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modern pathology 2023-12, Vol.36 (12), p.100326-100326, Article 100326
Hauptverfasser: Chen, Pingjun, Rojas, Frank R., Hu, Xin, Serrano, Alejandra, Zhu, Bo, Chen, Hong, Hong, Lingzhi, Bandyoyadhyay, Rukhmini, Aminu, Muhammad, Kalhor, Neda, Lee, J. Jack, El Hussein, Siba, Khoury, Joseph D., Pass, Harvey I., Moreira, Andre L., Velcheti, Vamsidhar, Sterman, Daniel H., Fukuoka, Junya, Tabata, Kazuhiro, Su, Dan, Ying, Lisha, Gibbons, Don L., Heymach, John V., Wistuba, Ignacio I., Fujimoto, Junya, Solis Soto, Luisa M., Zhang, Jianjun, Wu, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100326
container_issue 12
container_start_page 100326
container_title Modern pathology
container_volume 36
creator Chen, Pingjun
Rojas, Frank R.
Hu, Xin
Serrano, Alejandra
Zhu, Bo
Chen, Hong
Hong, Lingzhi
Bandyoyadhyay, Rukhmini
Aminu, Muhammad
Kalhor, Neda
Lee, J. Jack
El Hussein, Siba
Khoury, Joseph D.
Pass, Harvey I.
Moreira, Andre L.
Velcheti, Vamsidhar
Sterman, Daniel H.
Fukuoka, Junya
Tabata, Kazuhiro
Su, Dan
Ying, Lisha
Gibbons, Don L.
Heymach, John V.
Wistuba, Ignacio I.
Fujimoto, Junya
Solis Soto, Luisa M.
Zhang, Jianjun
Wu, Jia
description Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is the most common histologic subtype of lung cancer, and atypical adenomatous hyperplasia is the only recognized preneoplasia to ADC, which may progress to adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and eventually to invasive ADC. Although molecular evolution during early lung carcinogenesis has been explored in recent years, the progress has been significantly hindered, largely due to insufficient materials from ADC precursors. Here, we employed state-of-the-art deep learning and artificial intelligence techniques to robustly segment and recognize cells on routinely used hematoxylin and eosin histopathology images and extracted 9 biology-relevant pathomic features to decode lung preneoplasia evolution. We analyzed 3 distinct cohorts (Japan, China, and United States) covering 98 patients, 162 slides, and 669 regions of interest, including 143 normal, 129 atypical adenomatous hyperplasia, 94 AIS, 98 MIA, and 205 ADC. Extracted pathomic features revealed progressive increase of atypical epithelial cells and progressive decrease of lymphocytic cells from normal to AAH, AIS, MIA, and ADC, consistent with the results from tissue-consuming and expensive molecular/immune profiling. Furthermore, pathomics analysis manifested progressively increasing cellular intratumor heterogeneity along with the evolution from normal lung to invasive ADC. These findings demonstrated the feasibility and substantial potential of pathomics in studying lung cancer carcinogenesis directly from the low-cost routine hematoxylin and eosin staining.
doi_str_mv 10.1016/j.modpat.2023.100326
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10841057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893395223002314</els_id><sourcerecordid>2863298130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-5a6fd8131ddc2dfaad5c59a26bf820ae2caf578f4e1657ad1f8308080bada4973</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvpP0DIRy5Z_BEnzgVUVV1YaREVomdr1p60XiX2YieR-u_JKqWil8oHWzPvvDPjh5APnK0549Xnw7qP7gjDWjAh5xCTonpFVlxJVjCh1WuyYrqRhWyUOCPvcj4wxkulxVtyJuuq1lVdroi_geE-9t7SDcIwJsz0F04IHd32_RiQQnD0R-zQjh0kej3Fbhx8DHSTYk93Y7ijNwkDxmMH2QMdIt2GaX5OSC8dhmghWR9iD-_Jmxa6jBeP9zm53Vz_vvpe7H5-215d7gpbVuVQKKhap7nkzlnhWgCnrGpAVPtWCwYoLLSq1m2JvFI1ON5qyfR89uCgbGp5Tr4uvsdx36OzGIYEnTkm30N6MBG8eZ4J_t7cxclwpkvO1Mnh06NDin9GzIPpfbbYdTDvOWYjdCVFM8_IZmm5SG2KOSdsn_pwZk6YzMEsmMwJk1kwzWUf_5_xqegfl1nwZRHg_FOTx2Sy9RgsOp_QDsZF_3KHv385qKs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863298130</pqid></control><display><type>article</type><title>Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><creator>Chen, Pingjun ; Rojas, Frank R. ; Hu, Xin ; Serrano, Alejandra ; Zhu, Bo ; Chen, Hong ; Hong, Lingzhi ; Bandyoyadhyay, Rukhmini ; Aminu, Muhammad ; Kalhor, Neda ; Lee, J. Jack ; El Hussein, Siba ; Khoury, Joseph D. ; Pass, Harvey I. ; Moreira, Andre L. ; Velcheti, Vamsidhar ; Sterman, Daniel H. ; Fukuoka, Junya ; Tabata, Kazuhiro ; Su, Dan ; Ying, Lisha ; Gibbons, Don L. ; Heymach, John V. ; Wistuba, Ignacio I. ; Fujimoto, Junya ; Solis Soto, Luisa M. ; Zhang, Jianjun ; Wu, Jia</creator><creatorcontrib>Chen, Pingjun ; Rojas, Frank R. ; Hu, Xin ; Serrano, Alejandra ; Zhu, Bo ; Chen, Hong ; Hong, Lingzhi ; Bandyoyadhyay, Rukhmini ; Aminu, Muhammad ; Kalhor, Neda ; Lee, J. Jack ; El Hussein, Siba ; Khoury, Joseph D. ; Pass, Harvey I. ; Moreira, Andre L. ; Velcheti, Vamsidhar ; Sterman, Daniel H. ; Fukuoka, Junya ; Tabata, Kazuhiro ; Su, Dan ; Ying, Lisha ; Gibbons, Don L. ; Heymach, John V. ; Wistuba, Ignacio I. ; Fujimoto, Junya ; Solis Soto, Luisa M. ; Zhang, Jianjun ; Wu, Jia</creatorcontrib><description>Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is the most common histologic subtype of lung cancer, and atypical adenomatous hyperplasia is the only recognized preneoplasia to ADC, which may progress to adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and eventually to invasive ADC. Although molecular evolution during early lung carcinogenesis has been explored in recent years, the progress has been significantly hindered, largely due to insufficient materials from ADC precursors. Here, we employed state-of-the-art deep learning and artificial intelligence techniques to robustly segment and recognize cells on routinely used hematoxylin and eosin histopathology images and extracted 9 biology-relevant pathomic features to decode lung preneoplasia evolution. We analyzed 3 distinct cohorts (Japan, China, and United States) covering 98 patients, 162 slides, and 669 regions of interest, including 143 normal, 129 atypical adenomatous hyperplasia, 94 AIS, 98 MIA, and 205 ADC. Extracted pathomic features revealed progressive increase of atypical epithelial cells and progressive decrease of lymphocytic cells from normal to AAH, AIS, MIA, and ADC, consistent with the results from tissue-consuming and expensive molecular/immune profiling. Furthermore, pathomics analysis manifested progressively increasing cellular intratumor heterogeneity along with the evolution from normal lung to invasive ADC. These findings demonstrated the feasibility and substantial potential of pathomics in studying lung cancer carcinogenesis directly from the low-cost routine hematoxylin and eosin staining.</description><identifier>ISSN: 0893-3952</identifier><identifier>ISSN: 1530-0285</identifier><identifier>EISSN: 1530-0285</identifier><identifier>DOI: 10.1016/j.modpat.2023.100326</identifier><identifier>PMID: 37678674</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenocarcinoma - genetics ; Adenocarcinoma - pathology ; Adenocarcinoma in Situ - genetics ; Adenocarcinoma in Situ - pathology ; Artificial Intelligence ; Carcinogenesis - pathology ; computational pathology ; deep learning ; Eosine Yellowish-(YS) ; Evolution, Molecular ; Hematoxylin ; Humans ; Hyperplasia - pathology ; Lung - pathology ; lung cancer ; Lung Neoplasms - genetics ; Lung Neoplasms - pathology ; pathomic features ; Precancerous Conditions - genetics ; Precancerous Conditions - pathology ; preneoplasia evolution ; tumor heterogeneity</subject><ispartof>Modern pathology, 2023-12, Vol.36 (12), p.100326-100326, Article 100326</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-5a6fd8131ddc2dfaad5c59a26bf820ae2caf578f4e1657ad1f8308080bada4973</citedby><cites>FETCH-LOGICAL-c464t-5a6fd8131ddc2dfaad5c59a26bf820ae2caf578f4e1657ad1f8308080bada4973</cites><orcidid>0000-0003-0528-1713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924,64386</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37678674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Pingjun</creatorcontrib><creatorcontrib>Rojas, Frank R.</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Serrano, Alejandra</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Hong, Lingzhi</creatorcontrib><creatorcontrib>Bandyoyadhyay, Rukhmini</creatorcontrib><creatorcontrib>Aminu, Muhammad</creatorcontrib><creatorcontrib>Kalhor, Neda</creatorcontrib><creatorcontrib>Lee, J. Jack</creatorcontrib><creatorcontrib>El Hussein, Siba</creatorcontrib><creatorcontrib>Khoury, Joseph D.</creatorcontrib><creatorcontrib>Pass, Harvey I.</creatorcontrib><creatorcontrib>Moreira, Andre L.</creatorcontrib><creatorcontrib>Velcheti, Vamsidhar</creatorcontrib><creatorcontrib>Sterman, Daniel H.</creatorcontrib><creatorcontrib>Fukuoka, Junya</creatorcontrib><creatorcontrib>Tabata, Kazuhiro</creatorcontrib><creatorcontrib>Su, Dan</creatorcontrib><creatorcontrib>Ying, Lisha</creatorcontrib><creatorcontrib>Gibbons, Don L.</creatorcontrib><creatorcontrib>Heymach, John V.</creatorcontrib><creatorcontrib>Wistuba, Ignacio I.</creatorcontrib><creatorcontrib>Fujimoto, Junya</creatorcontrib><creatorcontrib>Solis Soto, Luisa M.</creatorcontrib><creatorcontrib>Zhang, Jianjun</creatorcontrib><creatorcontrib>Wu, Jia</creatorcontrib><title>Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma</title><title>Modern pathology</title><addtitle>Mod Pathol</addtitle><description>Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is the most common histologic subtype of lung cancer, and atypical adenomatous hyperplasia is the only recognized preneoplasia to ADC, which may progress to adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and eventually to invasive ADC. Although molecular evolution during early lung carcinogenesis has been explored in recent years, the progress has been significantly hindered, largely due to insufficient materials from ADC precursors. Here, we employed state-of-the-art deep learning and artificial intelligence techniques to robustly segment and recognize cells on routinely used hematoxylin and eosin histopathology images and extracted 9 biology-relevant pathomic features to decode lung preneoplasia evolution. We analyzed 3 distinct cohorts (Japan, China, and United States) covering 98 patients, 162 slides, and 669 regions of interest, including 143 normal, 129 atypical adenomatous hyperplasia, 94 AIS, 98 MIA, and 205 ADC. Extracted pathomic features revealed progressive increase of atypical epithelial cells and progressive decrease of lymphocytic cells from normal to AAH, AIS, MIA, and ADC, consistent with the results from tissue-consuming and expensive molecular/immune profiling. Furthermore, pathomics analysis manifested progressively increasing cellular intratumor heterogeneity along with the evolution from normal lung to invasive ADC. These findings demonstrated the feasibility and substantial potential of pathomics in studying lung cancer carcinogenesis directly from the low-cost routine hematoxylin and eosin staining.</description><subject>Adenocarcinoma - genetics</subject><subject>Adenocarcinoma - pathology</subject><subject>Adenocarcinoma in Situ - genetics</subject><subject>Adenocarcinoma in Situ - pathology</subject><subject>Artificial Intelligence</subject><subject>Carcinogenesis - pathology</subject><subject>computational pathology</subject><subject>deep learning</subject><subject>Eosine Yellowish-(YS)</subject><subject>Evolution, Molecular</subject><subject>Hematoxylin</subject><subject>Humans</subject><subject>Hyperplasia - pathology</subject><subject>Lung - pathology</subject><subject>lung cancer</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - pathology</subject><subject>pathomic features</subject><subject>Precancerous Conditions - genetics</subject><subject>Precancerous Conditions - pathology</subject><subject>preneoplasia evolution</subject><subject>tumor heterogeneity</subject><issn>0893-3952</issn><issn>1530-0285</issn><issn>1530-0285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EokvpP0DIRy5Z_BEnzgVUVV1YaREVomdr1p60XiX2YieR-u_JKqWil8oHWzPvvDPjh5APnK0549Xnw7qP7gjDWjAh5xCTonpFVlxJVjCh1WuyYrqRhWyUOCPvcj4wxkulxVtyJuuq1lVdroi_geE-9t7SDcIwJsz0F04IHd32_RiQQnD0R-zQjh0kej3Fbhx8DHSTYk93Y7ijNwkDxmMH2QMdIt2GaX5OSC8dhmghWR9iD-_Jmxa6jBeP9zm53Vz_vvpe7H5-215d7gpbVuVQKKhap7nkzlnhWgCnrGpAVPtWCwYoLLSq1m2JvFI1ON5qyfR89uCgbGp5Tr4uvsdx36OzGIYEnTkm30N6MBG8eZ4J_t7cxclwpkvO1Mnh06NDin9GzIPpfbbYdTDvOWYjdCVFM8_IZmm5SG2KOSdsn_pwZk6YzMEsmMwJk1kwzWUf_5_xqegfl1nwZRHg_FOTx2Sy9RgsOp_QDsZF_3KHv385qKs</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Chen, Pingjun</creator><creator>Rojas, Frank R.</creator><creator>Hu, Xin</creator><creator>Serrano, Alejandra</creator><creator>Zhu, Bo</creator><creator>Chen, Hong</creator><creator>Hong, Lingzhi</creator><creator>Bandyoyadhyay, Rukhmini</creator><creator>Aminu, Muhammad</creator><creator>Kalhor, Neda</creator><creator>Lee, J. Jack</creator><creator>El Hussein, Siba</creator><creator>Khoury, Joseph D.</creator><creator>Pass, Harvey I.</creator><creator>Moreira, Andre L.</creator><creator>Velcheti, Vamsidhar</creator><creator>Sterman, Daniel H.</creator><creator>Fukuoka, Junya</creator><creator>Tabata, Kazuhiro</creator><creator>Su, Dan</creator><creator>Ying, Lisha</creator><creator>Gibbons, Don L.</creator><creator>Heymach, John V.</creator><creator>Wistuba, Ignacio I.</creator><creator>Fujimoto, Junya</creator><creator>Solis Soto, Luisa M.</creator><creator>Zhang, Jianjun</creator><creator>Wu, Jia</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0528-1713</orcidid></search><sort><creationdate>20231201</creationdate><title>Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma</title><author>Chen, Pingjun ; Rojas, Frank R. ; Hu, Xin ; Serrano, Alejandra ; Zhu, Bo ; Chen, Hong ; Hong, Lingzhi ; Bandyoyadhyay, Rukhmini ; Aminu, Muhammad ; Kalhor, Neda ; Lee, J. Jack ; El Hussein, Siba ; Khoury, Joseph D. ; Pass, Harvey I. ; Moreira, Andre L. ; Velcheti, Vamsidhar ; Sterman, Daniel H. ; Fukuoka, Junya ; Tabata, Kazuhiro ; Su, Dan ; Ying, Lisha ; Gibbons, Don L. ; Heymach, John V. ; Wistuba, Ignacio I. ; Fujimoto, Junya ; Solis Soto, Luisa M. ; Zhang, Jianjun ; Wu, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-5a6fd8131ddc2dfaad5c59a26bf820ae2caf578f4e1657ad1f8308080bada4973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenocarcinoma - genetics</topic><topic>Adenocarcinoma - pathology</topic><topic>Adenocarcinoma in Situ - genetics</topic><topic>Adenocarcinoma in Situ - pathology</topic><topic>Artificial Intelligence</topic><topic>Carcinogenesis - pathology</topic><topic>computational pathology</topic><topic>deep learning</topic><topic>Eosine Yellowish-(YS)</topic><topic>Evolution, Molecular</topic><topic>Hematoxylin</topic><topic>Humans</topic><topic>Hyperplasia - pathology</topic><topic>Lung - pathology</topic><topic>lung cancer</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - pathology</topic><topic>pathomic features</topic><topic>Precancerous Conditions - genetics</topic><topic>Precancerous Conditions - pathology</topic><topic>preneoplasia evolution</topic><topic>tumor heterogeneity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Pingjun</creatorcontrib><creatorcontrib>Rojas, Frank R.</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Serrano, Alejandra</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Hong, Lingzhi</creatorcontrib><creatorcontrib>Bandyoyadhyay, Rukhmini</creatorcontrib><creatorcontrib>Aminu, Muhammad</creatorcontrib><creatorcontrib>Kalhor, Neda</creatorcontrib><creatorcontrib>Lee, J. Jack</creatorcontrib><creatorcontrib>El Hussein, Siba</creatorcontrib><creatorcontrib>Khoury, Joseph D.</creatorcontrib><creatorcontrib>Pass, Harvey I.</creatorcontrib><creatorcontrib>Moreira, Andre L.</creatorcontrib><creatorcontrib>Velcheti, Vamsidhar</creatorcontrib><creatorcontrib>Sterman, Daniel H.</creatorcontrib><creatorcontrib>Fukuoka, Junya</creatorcontrib><creatorcontrib>Tabata, Kazuhiro</creatorcontrib><creatorcontrib>Su, Dan</creatorcontrib><creatorcontrib>Ying, Lisha</creatorcontrib><creatorcontrib>Gibbons, Don L.</creatorcontrib><creatorcontrib>Heymach, John V.</creatorcontrib><creatorcontrib>Wistuba, Ignacio I.</creatorcontrib><creatorcontrib>Fujimoto, Junya</creatorcontrib><creatorcontrib>Solis Soto, Luisa M.</creatorcontrib><creatorcontrib>Zhang, Jianjun</creatorcontrib><creatorcontrib>Wu, Jia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Modern pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Pingjun</au><au>Rojas, Frank R.</au><au>Hu, Xin</au><au>Serrano, Alejandra</au><au>Zhu, Bo</au><au>Chen, Hong</au><au>Hong, Lingzhi</au><au>Bandyoyadhyay, Rukhmini</au><au>Aminu, Muhammad</au><au>Kalhor, Neda</au><au>Lee, J. Jack</au><au>El Hussein, Siba</au><au>Khoury, Joseph D.</au><au>Pass, Harvey I.</au><au>Moreira, Andre L.</au><au>Velcheti, Vamsidhar</au><au>Sterman, Daniel H.</au><au>Fukuoka, Junya</au><au>Tabata, Kazuhiro</au><au>Su, Dan</au><au>Ying, Lisha</au><au>Gibbons, Don L.</au><au>Heymach, John V.</au><au>Wistuba, Ignacio I.</au><au>Fujimoto, Junya</au><au>Solis Soto, Luisa M.</au><au>Zhang, Jianjun</au><au>Wu, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma</atitle><jtitle>Modern pathology</jtitle><addtitle>Mod Pathol</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>36</volume><issue>12</issue><spage>100326</spage><epage>100326</epage><pages>100326-100326</pages><artnum>100326</artnum><issn>0893-3952</issn><issn>1530-0285</issn><eissn>1530-0285</eissn><abstract>Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is the most common histologic subtype of lung cancer, and atypical adenomatous hyperplasia is the only recognized preneoplasia to ADC, which may progress to adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and eventually to invasive ADC. Although molecular evolution during early lung carcinogenesis has been explored in recent years, the progress has been significantly hindered, largely due to insufficient materials from ADC precursors. Here, we employed state-of-the-art deep learning and artificial intelligence techniques to robustly segment and recognize cells on routinely used hematoxylin and eosin histopathology images and extracted 9 biology-relevant pathomic features to decode lung preneoplasia evolution. We analyzed 3 distinct cohorts (Japan, China, and United States) covering 98 patients, 162 slides, and 669 regions of interest, including 143 normal, 129 atypical adenomatous hyperplasia, 94 AIS, 98 MIA, and 205 ADC. Extracted pathomic features revealed progressive increase of atypical epithelial cells and progressive decrease of lymphocytic cells from normal to AAH, AIS, MIA, and ADC, consistent with the results from tissue-consuming and expensive molecular/immune profiling. Furthermore, pathomics analysis manifested progressively increasing cellular intratumor heterogeneity along with the evolution from normal lung to invasive ADC. These findings demonstrated the feasibility and substantial potential of pathomics in studying lung cancer carcinogenesis directly from the low-cost routine hematoxylin and eosin staining.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37678674</pmid><doi>10.1016/j.modpat.2023.100326</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0528-1713</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-3952
ispartof Modern pathology, 2023-12, Vol.36 (12), p.100326-100326, Article 100326
issn 0893-3952
1530-0285
1530-0285
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10841057
source MEDLINE; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection
subjects Adenocarcinoma - genetics
Adenocarcinoma - pathology
Adenocarcinoma in Situ - genetics
Adenocarcinoma in Situ - pathology
Artificial Intelligence
Carcinogenesis - pathology
computational pathology
deep learning
Eosine Yellowish-(YS)
Evolution, Molecular
Hematoxylin
Humans
Hyperplasia - pathology
Lung - pathology
lung cancer
Lung Neoplasms - genetics
Lung Neoplasms - pathology
pathomic features
Precancerous Conditions - genetics
Precancerous Conditions - pathology
preneoplasia evolution
tumor heterogeneity
title Pathomic Features Reveal Immune and Molecular Evolution From Lung Preneoplasia to Invasive Adenocarcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathomic%20Features%20Reveal%20Immune%20and%20Molecular%20Evolution%20From%20Lung%20Preneoplasia%20to%20Invasive%20Adenocarcinoma&rft.jtitle=Modern%20pathology&rft.au=Chen,%20Pingjun&rft.date=2023-12-01&rft.volume=36&rft.issue=12&rft.spage=100326&rft.epage=100326&rft.pages=100326-100326&rft.artnum=100326&rft.issn=0893-3952&rft.eissn=1530-0285&rft_id=info:doi/10.1016/j.modpat.2023.100326&rft_dat=%3Cproquest_pubme%3E2863298130%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863298130&rft_id=info:pmid/37678674&rft_els_id=S0893395223002314&rfr_iscdi=true