A Bioinformatics Tool for Identifying Intratumoral Microbes from the ORIEN Dataset
Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10%-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown....
Gespeichert in:
Veröffentlicht in: | Cancer research communications 2024-02, Vol.4 (2), p.293-302 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 302 |
---|---|
container_issue | 2 |
container_start_page | 293 |
container_title | Cancer research communications |
container_volume | 4 |
creator | Wang, Cankun Ma, Anjun Li, Yingjie McNutt, Megan E Zhang, Shiqi Zhu, Jiangjiang Hoyd, Rebecca Wheeler, Caroline E Robinson, Lary A Chan, Carlos H F Zakharia, Yousef Dodd, Rebecca D Ulrich, Cornelia M Hardikar, Sheetal Churchman, Michelle L Tarhini, Ahmad A Singer, Eric A Ikeguchi, Alexandra P McCarter, Martin D Denko, Nicholas Tinoco, Gabriel Husain, Marium Jin, Ning Osman, Afaf E G Eljilany, Islam Tan, Aik Choon Coleman, Samuel S Denko, Louis Riedlinger, Gregory Schneider, Bryan P Spakowicz, Daniel Ma, Qin |
description | Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10%-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, microbial graph attention (MEGA), to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of nine cancer centers in the Oncology Research Information Exchange Network. This package has three unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2,704 tumor RNA sequencing samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors.
Studying the tumor microbiome in high-throughput sequencing data is challenging because of the extremely sparse data matrices, heterogeneity, and high likelihood of contamination. We present a new deep learning tool, MEGA, to refine the organisms that interact with tumors. |
doi_str_mv | 10.1158/2767-9764.CRC-23-0213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10840455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917862726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-c0b48681ad8e2c20665efe741194e5bc358a6af5482dd21d7ce33abe544e33d03</originalsourceid><addsrcrecordid>eNpVUU1P3DAQtaoiQMBPoPKxl2z9bedUbbdLu9IC0grOluNMwFUSU9tbiX9PIugKTvP9ZuY9hC4pWVAqzTemla5qrcRitVtVjFeEUf4JnR7yn9_5J-gi5z-EEKa1kIofoxNumKxJLU_Rbol_hBjGLqbBleAzvouxx1OINy2MJXTPYXzAm7EkV_ZDTK7H18Gn2EDGXYoDLo-Ab3eb9Q3-6YrLUM7RUef6DBdv9gzdX63vVr-r7e2vzWq5rTxXpFSeNMIoQ11rgHlGlJLQgRaU1gJk47k0TrlOCsPaltFWe-DcNSCFmJyW8DP0_RX3ad8M0HqYb-ztUwqDS882umA_VsbwaB_iP0uJEURIOSF8fUNI8e8ecrFDyB763o0Q99mymmqjmGZqapWvrdPrOSfoDnsosbMmdubbznzbSRPLuJ01mea-vD_yMPVfAf4C8WKIpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917862726</pqid></control><display><type>article</type><title>A Bioinformatics Tool for Identifying Intratumoral Microbes from the ORIEN Dataset</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wang, Cankun ; Ma, Anjun ; Li, Yingjie ; McNutt, Megan E ; Zhang, Shiqi ; Zhu, Jiangjiang ; Hoyd, Rebecca ; Wheeler, Caroline E ; Robinson, Lary A ; Chan, Carlos H F ; Zakharia, Yousef ; Dodd, Rebecca D ; Ulrich, Cornelia M ; Hardikar, Sheetal ; Churchman, Michelle L ; Tarhini, Ahmad A ; Singer, Eric A ; Ikeguchi, Alexandra P ; McCarter, Martin D ; Denko, Nicholas ; Tinoco, Gabriel ; Husain, Marium ; Jin, Ning ; Osman, Afaf E G ; Eljilany, Islam ; Tan, Aik Choon ; Coleman, Samuel S ; Denko, Louis ; Riedlinger, Gregory ; Schneider, Bryan P ; Spakowicz, Daniel ; Ma, Qin</creator><creatorcontrib>Wang, Cankun ; Ma, Anjun ; Li, Yingjie ; McNutt, Megan E ; Zhang, Shiqi ; Zhu, Jiangjiang ; Hoyd, Rebecca ; Wheeler, Caroline E ; Robinson, Lary A ; Chan, Carlos H F ; Zakharia, Yousef ; Dodd, Rebecca D ; Ulrich, Cornelia M ; Hardikar, Sheetal ; Churchman, Michelle L ; Tarhini, Ahmad A ; Singer, Eric A ; Ikeguchi, Alexandra P ; McCarter, Martin D ; Denko, Nicholas ; Tinoco, Gabriel ; Husain, Marium ; Jin, Ning ; Osman, Afaf E G ; Eljilany, Islam ; Tan, Aik Choon ; Coleman, Samuel S ; Denko, Louis ; Riedlinger, Gregory ; Schneider, Bryan P ; Spakowicz, Daniel ; Ma, Qin ; exORIEN Consortium ; the exORIEN Consortium</creatorcontrib><description>Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10%-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, microbial graph attention (MEGA), to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of nine cancer centers in the Oncology Research Information Exchange Network. This package has three unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2,704 tumor RNA sequencing samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors.
Studying the tumor microbiome in high-throughput sequencing data is challenging because of the extremely sparse data matrices, heterogeneity, and high likelihood of contamination. We present a new deep learning tool, MEGA, to refine the organisms that interact with tumors.</description><identifier>ISSN: 2767-9764</identifier><identifier>EISSN: 2767-9764</identifier><identifier>DOI: 10.1158/2767-9764.CRC-23-0213</identifier><identifier>PMID: 38259095</identifier><language>eng</language><publisher>United States: American Association for Cancer Research</publisher><subject>Biomarkers ; Computational Biology ; Computational Methods ; Gene Technologies ; Genome Biology ; High-Throughput Nucleotide Sequencing ; Humans ; Microbiota - genetics ; Phylogeny ; Tumor Microenvironment</subject><ispartof>Cancer research communications, 2024-02, Vol.4 (2), p.293-302</ispartof><rights>2024 The Authors; Published by the American Association for Cancer Research.</rights><rights>2024 The Authors; Published by the American Association for Cancer Research 2024 Copyright held by the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-c0b48681ad8e2c20665efe741194e5bc358a6af5482dd21d7ce33abe544e33d03</cites><orcidid>0000-0001-5690-7777 ; 0000-0002-0225-9855 ; 0000-0002-4548-8949 ; 0000-0001-7641-059X ; 0000-0002-1868-1225 ; 0000-0002-3688-4683 ; 0000-0003-2955-8369 ; 0000-0001-9480-2626 ; 0000-0003-2649-1154 ; 0000-0002-4448-9755 ; 0000-0001-6269-398X ; 0000-0002-3264-8392 ; 0000-0002-3374-4909 ; 0009-0002-2946-5656 ; 0000-0002-3193-9702 ; 0000-0003-3656-2470 ; 0000-0003-1868-7739 ; 0000-0003-2314-6435 ; 0009-0001-5821-7873 ; 0000-0003-1210-4491 ; 0000-0002-6560-1056 ; 0000-0001-6875-734X ; 0009-0004-1499-4613 ; 0000-0003-0292-6168 ; 0000-0001-8174-1713 ; 0000-0003-4579-0141 ; 0000-0002-6689-4671 ; 0000-0001-7295-1882 ; 0009-0009-3092-1197 ; 0000-0002-2565-6124 ; 0000-0001-6387-5419 ; 0000-0003-3991-0696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840455/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840455/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38259095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Cankun</creatorcontrib><creatorcontrib>Ma, Anjun</creatorcontrib><creatorcontrib>Li, Yingjie</creatorcontrib><creatorcontrib>McNutt, Megan E</creatorcontrib><creatorcontrib>Zhang, Shiqi</creatorcontrib><creatorcontrib>Zhu, Jiangjiang</creatorcontrib><creatorcontrib>Hoyd, Rebecca</creatorcontrib><creatorcontrib>Wheeler, Caroline E</creatorcontrib><creatorcontrib>Robinson, Lary A</creatorcontrib><creatorcontrib>Chan, Carlos H F</creatorcontrib><creatorcontrib>Zakharia, Yousef</creatorcontrib><creatorcontrib>Dodd, Rebecca D</creatorcontrib><creatorcontrib>Ulrich, Cornelia M</creatorcontrib><creatorcontrib>Hardikar, Sheetal</creatorcontrib><creatorcontrib>Churchman, Michelle L</creatorcontrib><creatorcontrib>Tarhini, Ahmad A</creatorcontrib><creatorcontrib>Singer, Eric A</creatorcontrib><creatorcontrib>Ikeguchi, Alexandra P</creatorcontrib><creatorcontrib>McCarter, Martin D</creatorcontrib><creatorcontrib>Denko, Nicholas</creatorcontrib><creatorcontrib>Tinoco, Gabriel</creatorcontrib><creatorcontrib>Husain, Marium</creatorcontrib><creatorcontrib>Jin, Ning</creatorcontrib><creatorcontrib>Osman, Afaf E G</creatorcontrib><creatorcontrib>Eljilany, Islam</creatorcontrib><creatorcontrib>Tan, Aik Choon</creatorcontrib><creatorcontrib>Coleman, Samuel S</creatorcontrib><creatorcontrib>Denko, Louis</creatorcontrib><creatorcontrib>Riedlinger, Gregory</creatorcontrib><creatorcontrib>Schneider, Bryan P</creatorcontrib><creatorcontrib>Spakowicz, Daniel</creatorcontrib><creatorcontrib>Ma, Qin</creatorcontrib><creatorcontrib>exORIEN Consortium</creatorcontrib><creatorcontrib>the exORIEN Consortium</creatorcontrib><title>A Bioinformatics Tool for Identifying Intratumoral Microbes from the ORIEN Dataset</title><title>Cancer research communications</title><addtitle>Cancer Res Commun</addtitle><description>Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10%-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, microbial graph attention (MEGA), to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of nine cancer centers in the Oncology Research Information Exchange Network. This package has three unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2,704 tumor RNA sequencing samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors.
Studying the tumor microbiome in high-throughput sequencing data is challenging because of the extremely sparse data matrices, heterogeneity, and high likelihood of contamination. We present a new deep learning tool, MEGA, to refine the organisms that interact with tumors.</description><subject>Biomarkers</subject><subject>Computational Biology</subject><subject>Computational Methods</subject><subject>Gene Technologies</subject><subject>Genome Biology</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Microbiota - genetics</subject><subject>Phylogeny</subject><subject>Tumor Microenvironment</subject><issn>2767-9764</issn><issn>2767-9764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1P3DAQtaoiQMBPoPKxl2z9bedUbbdLu9IC0grOluNMwFUSU9tbiX9PIugKTvP9ZuY9hC4pWVAqzTemla5qrcRitVtVjFeEUf4JnR7yn9_5J-gi5z-EEKa1kIofoxNumKxJLU_Rbol_hBjGLqbBleAzvouxx1OINy2MJXTPYXzAm7EkV_ZDTK7H18Gn2EDGXYoDLo-Ab3eb9Q3-6YrLUM7RUef6DBdv9gzdX63vVr-r7e2vzWq5rTxXpFSeNMIoQ11rgHlGlJLQgRaU1gJk47k0TrlOCsPaltFWe-DcNSCFmJyW8DP0_RX3ad8M0HqYb-ztUwqDS882umA_VsbwaB_iP0uJEURIOSF8fUNI8e8ecrFDyB763o0Q99mymmqjmGZqapWvrdPrOSfoDnsosbMmdubbznzbSRPLuJ01mea-vD_yMPVfAf4C8WKIpg</recordid><startdate>20240205</startdate><enddate>20240205</enddate><creator>Wang, Cankun</creator><creator>Ma, Anjun</creator><creator>Li, Yingjie</creator><creator>McNutt, Megan E</creator><creator>Zhang, Shiqi</creator><creator>Zhu, Jiangjiang</creator><creator>Hoyd, Rebecca</creator><creator>Wheeler, Caroline E</creator><creator>Robinson, Lary A</creator><creator>Chan, Carlos H F</creator><creator>Zakharia, Yousef</creator><creator>Dodd, Rebecca D</creator><creator>Ulrich, Cornelia M</creator><creator>Hardikar, Sheetal</creator><creator>Churchman, Michelle L</creator><creator>Tarhini, Ahmad A</creator><creator>Singer, Eric A</creator><creator>Ikeguchi, Alexandra P</creator><creator>McCarter, Martin D</creator><creator>Denko, Nicholas</creator><creator>Tinoco, Gabriel</creator><creator>Husain, Marium</creator><creator>Jin, Ning</creator><creator>Osman, Afaf E G</creator><creator>Eljilany, Islam</creator><creator>Tan, Aik Choon</creator><creator>Coleman, Samuel S</creator><creator>Denko, Louis</creator><creator>Riedlinger, Gregory</creator><creator>Schneider, Bryan P</creator><creator>Spakowicz, Daniel</creator><creator>Ma, Qin</creator><general>American Association for Cancer Research</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5690-7777</orcidid><orcidid>https://orcid.org/0000-0002-0225-9855</orcidid><orcidid>https://orcid.org/0000-0002-4548-8949</orcidid><orcidid>https://orcid.org/0000-0001-7641-059X</orcidid><orcidid>https://orcid.org/0000-0002-1868-1225</orcidid><orcidid>https://orcid.org/0000-0002-3688-4683</orcidid><orcidid>https://orcid.org/0000-0003-2955-8369</orcidid><orcidid>https://orcid.org/0000-0001-9480-2626</orcidid><orcidid>https://orcid.org/0000-0003-2649-1154</orcidid><orcidid>https://orcid.org/0000-0002-4448-9755</orcidid><orcidid>https://orcid.org/0000-0001-6269-398X</orcidid><orcidid>https://orcid.org/0000-0002-3264-8392</orcidid><orcidid>https://orcid.org/0000-0002-3374-4909</orcidid><orcidid>https://orcid.org/0009-0002-2946-5656</orcidid><orcidid>https://orcid.org/0000-0002-3193-9702</orcidid><orcidid>https://orcid.org/0000-0003-3656-2470</orcidid><orcidid>https://orcid.org/0000-0003-1868-7739</orcidid><orcidid>https://orcid.org/0000-0003-2314-6435</orcidid><orcidid>https://orcid.org/0009-0001-5821-7873</orcidid><orcidid>https://orcid.org/0000-0003-1210-4491</orcidid><orcidid>https://orcid.org/0000-0002-6560-1056</orcidid><orcidid>https://orcid.org/0000-0001-6875-734X</orcidid><orcidid>https://orcid.org/0009-0004-1499-4613</orcidid><orcidid>https://orcid.org/0000-0003-0292-6168</orcidid><orcidid>https://orcid.org/0000-0001-8174-1713</orcidid><orcidid>https://orcid.org/0000-0003-4579-0141</orcidid><orcidid>https://orcid.org/0000-0002-6689-4671</orcidid><orcidid>https://orcid.org/0000-0001-7295-1882</orcidid><orcidid>https://orcid.org/0009-0009-3092-1197</orcidid><orcidid>https://orcid.org/0000-0002-2565-6124</orcidid><orcidid>https://orcid.org/0000-0001-6387-5419</orcidid><orcidid>https://orcid.org/0000-0003-3991-0696</orcidid></search><sort><creationdate>20240205</creationdate><title>A Bioinformatics Tool for Identifying Intratumoral Microbes from the ORIEN Dataset</title><author>Wang, Cankun ; Ma, Anjun ; Li, Yingjie ; McNutt, Megan E ; Zhang, Shiqi ; Zhu, Jiangjiang ; Hoyd, Rebecca ; Wheeler, Caroline E ; Robinson, Lary A ; Chan, Carlos H F ; Zakharia, Yousef ; Dodd, Rebecca D ; Ulrich, Cornelia M ; Hardikar, Sheetal ; Churchman, Michelle L ; Tarhini, Ahmad A ; Singer, Eric A ; Ikeguchi, Alexandra P ; McCarter, Martin D ; Denko, Nicholas ; Tinoco, Gabriel ; Husain, Marium ; Jin, Ning ; Osman, Afaf E G ; Eljilany, Islam ; Tan, Aik Choon ; Coleman, Samuel S ; Denko, Louis ; Riedlinger, Gregory ; Schneider, Bryan P ; Spakowicz, Daniel ; Ma, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-c0b48681ad8e2c20665efe741194e5bc358a6af5482dd21d7ce33abe544e33d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomarkers</topic><topic>Computational Biology</topic><topic>Computational Methods</topic><topic>Gene Technologies</topic><topic>Genome Biology</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Microbiota - genetics</topic><topic>Phylogeny</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Cankun</creatorcontrib><creatorcontrib>Ma, Anjun</creatorcontrib><creatorcontrib>Li, Yingjie</creatorcontrib><creatorcontrib>McNutt, Megan E</creatorcontrib><creatorcontrib>Zhang, Shiqi</creatorcontrib><creatorcontrib>Zhu, Jiangjiang</creatorcontrib><creatorcontrib>Hoyd, Rebecca</creatorcontrib><creatorcontrib>Wheeler, Caroline E</creatorcontrib><creatorcontrib>Robinson, Lary A</creatorcontrib><creatorcontrib>Chan, Carlos H F</creatorcontrib><creatorcontrib>Zakharia, Yousef</creatorcontrib><creatorcontrib>Dodd, Rebecca D</creatorcontrib><creatorcontrib>Ulrich, Cornelia M</creatorcontrib><creatorcontrib>Hardikar, Sheetal</creatorcontrib><creatorcontrib>Churchman, Michelle L</creatorcontrib><creatorcontrib>Tarhini, Ahmad A</creatorcontrib><creatorcontrib>Singer, Eric A</creatorcontrib><creatorcontrib>Ikeguchi, Alexandra P</creatorcontrib><creatorcontrib>McCarter, Martin D</creatorcontrib><creatorcontrib>Denko, Nicholas</creatorcontrib><creatorcontrib>Tinoco, Gabriel</creatorcontrib><creatorcontrib>Husain, Marium</creatorcontrib><creatorcontrib>Jin, Ning</creatorcontrib><creatorcontrib>Osman, Afaf E G</creatorcontrib><creatorcontrib>Eljilany, Islam</creatorcontrib><creatorcontrib>Tan, Aik Choon</creatorcontrib><creatorcontrib>Coleman, Samuel S</creatorcontrib><creatorcontrib>Denko, Louis</creatorcontrib><creatorcontrib>Riedlinger, Gregory</creatorcontrib><creatorcontrib>Schneider, Bryan P</creatorcontrib><creatorcontrib>Spakowicz, Daniel</creatorcontrib><creatorcontrib>Ma, Qin</creatorcontrib><creatorcontrib>exORIEN Consortium</creatorcontrib><creatorcontrib>the exORIEN Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Cankun</au><au>Ma, Anjun</au><au>Li, Yingjie</au><au>McNutt, Megan E</au><au>Zhang, Shiqi</au><au>Zhu, Jiangjiang</au><au>Hoyd, Rebecca</au><au>Wheeler, Caroline E</au><au>Robinson, Lary A</au><au>Chan, Carlos H F</au><au>Zakharia, Yousef</au><au>Dodd, Rebecca D</au><au>Ulrich, Cornelia M</au><au>Hardikar, Sheetal</au><au>Churchman, Michelle L</au><au>Tarhini, Ahmad A</au><au>Singer, Eric A</au><au>Ikeguchi, Alexandra P</au><au>McCarter, Martin D</au><au>Denko, Nicholas</au><au>Tinoco, Gabriel</au><au>Husain, Marium</au><au>Jin, Ning</au><au>Osman, Afaf E G</au><au>Eljilany, Islam</au><au>Tan, Aik Choon</au><au>Coleman, Samuel S</au><au>Denko, Louis</au><au>Riedlinger, Gregory</au><au>Schneider, Bryan P</au><au>Spakowicz, Daniel</au><au>Ma, Qin</au><aucorp>exORIEN Consortium</aucorp><aucorp>the exORIEN Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bioinformatics Tool for Identifying Intratumoral Microbes from the ORIEN Dataset</atitle><jtitle>Cancer research communications</jtitle><addtitle>Cancer Res Commun</addtitle><date>2024-02-05</date><risdate>2024</risdate><volume>4</volume><issue>2</issue><spage>293</spage><epage>302</epage><pages>293-302</pages><issn>2767-9764</issn><eissn>2767-9764</eissn><abstract>Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10%-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, microbial graph attention (MEGA), to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of nine cancer centers in the Oncology Research Information Exchange Network. This package has three unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2,704 tumor RNA sequencing samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors.
Studying the tumor microbiome in high-throughput sequencing data is challenging because of the extremely sparse data matrices, heterogeneity, and high likelihood of contamination. We present a new deep learning tool, MEGA, to refine the organisms that interact with tumors.</abstract><cop>United States</cop><pub>American Association for Cancer Research</pub><pmid>38259095</pmid><doi>10.1158/2767-9764.CRC-23-0213</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5690-7777</orcidid><orcidid>https://orcid.org/0000-0002-0225-9855</orcidid><orcidid>https://orcid.org/0000-0002-4548-8949</orcidid><orcidid>https://orcid.org/0000-0001-7641-059X</orcidid><orcidid>https://orcid.org/0000-0002-1868-1225</orcidid><orcidid>https://orcid.org/0000-0002-3688-4683</orcidid><orcidid>https://orcid.org/0000-0003-2955-8369</orcidid><orcidid>https://orcid.org/0000-0001-9480-2626</orcidid><orcidid>https://orcid.org/0000-0003-2649-1154</orcidid><orcidid>https://orcid.org/0000-0002-4448-9755</orcidid><orcidid>https://orcid.org/0000-0001-6269-398X</orcidid><orcidid>https://orcid.org/0000-0002-3264-8392</orcidid><orcidid>https://orcid.org/0000-0002-3374-4909</orcidid><orcidid>https://orcid.org/0009-0002-2946-5656</orcidid><orcidid>https://orcid.org/0000-0002-3193-9702</orcidid><orcidid>https://orcid.org/0000-0003-3656-2470</orcidid><orcidid>https://orcid.org/0000-0003-1868-7739</orcidid><orcidid>https://orcid.org/0000-0003-2314-6435</orcidid><orcidid>https://orcid.org/0009-0001-5821-7873</orcidid><orcidid>https://orcid.org/0000-0003-1210-4491</orcidid><orcidid>https://orcid.org/0000-0002-6560-1056</orcidid><orcidid>https://orcid.org/0000-0001-6875-734X</orcidid><orcidid>https://orcid.org/0009-0004-1499-4613</orcidid><orcidid>https://orcid.org/0000-0003-0292-6168</orcidid><orcidid>https://orcid.org/0000-0001-8174-1713</orcidid><orcidid>https://orcid.org/0000-0003-4579-0141</orcidid><orcidid>https://orcid.org/0000-0002-6689-4671</orcidid><orcidid>https://orcid.org/0000-0001-7295-1882</orcidid><orcidid>https://orcid.org/0009-0009-3092-1197</orcidid><orcidid>https://orcid.org/0000-0002-2565-6124</orcidid><orcidid>https://orcid.org/0000-0001-6387-5419</orcidid><orcidid>https://orcid.org/0000-0003-3991-0696</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2767-9764 |
ispartof | Cancer research communications, 2024-02, Vol.4 (2), p.293-302 |
issn | 2767-9764 2767-9764 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10840455 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Biomarkers Computational Biology Computational Methods Gene Technologies Genome Biology High-Throughput Nucleotide Sequencing Humans Microbiota - genetics Phylogeny Tumor Microenvironment |
title | A Bioinformatics Tool for Identifying Intratumoral Microbes from the ORIEN Dataset |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bioinformatics%20Tool%20for%20Identifying%20Intratumoral%20Microbes%20from%20the%20ORIEN%20Dataset&rft.jtitle=Cancer%20research%20communications&rft.au=Wang,%20Cankun&rft.aucorp=exORIEN%20Consortium&rft.date=2024-02-05&rft.volume=4&rft.issue=2&rft.spage=293&rft.epage=302&rft.pages=293-302&rft.issn=2767-9764&rft.eissn=2767-9764&rft_id=info:doi/10.1158/2767-9764.CRC-23-0213&rft_dat=%3Cproquest_pubme%3E2917862726%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917862726&rft_id=info:pmid/38259095&rfr_iscdi=true |