Digital Light Processing 3D Bioprinting of Gelatin‐Norbornene Hydrogel for Enhanced Vascularization

Digital light processing (DLP) bioprinting can be used to fabricate volumetric scaffolds with intricate internal structures, such as perfusable vascular channels. The successful implementation of DLP bioprinting in tissue fabrication requires using suitable photo‐reactive bioinks. Norbornene‐based b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2023-12, Vol.23 (12), p.e2300213-n/a
Hauptverfasser: Duong, Van Thuy, Lin, Chien‐Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e2300213
container_title Macromolecular bioscience
container_volume 23
creator Duong, Van Thuy
Lin, Chien‐Chi
description Digital light processing (DLP) bioprinting can be used to fabricate volumetric scaffolds with intricate internal structures, such as perfusable vascular channels. The successful implementation of DLP bioprinting in tissue fabrication requires using suitable photo‐reactive bioinks. Norbornene‐based bioinks have emerged as an attractive alternative to (meth)acrylated macromers in 3D bioprinting owing to their mild and rapid reaction kinetics, high cytocompatibility for in situ cell encapsulation, and adaptability for post‐printing modification or conjugation of bioactive motifs. In this contribution, the development of gelatin‐norbornene (GelNB) is reported as a photo‐cross‐linkable bioink for DLP 3D bioprinting. Low concentrations of GelNB (2–5 wt.%) and poly(ethylene glycol)‐tetra‐thiol (PEG4SH) are DLP‐printed with a wide range of stiffness (G' ≈120 to 4000 Pa) and with perfusable channels. DLP‐printed GelNB hydrogels are highly cytocompatible, as demonstrated by the high viability of the encapsulated human umbilical vein endothelial cells (HUVECs). The encapsulated HUVECs formed an interconnected microvascular network with lumen structures. Notably, the GelNB bioink permitted both in situ tethering and secondary conjugation of QK peptide, a vascular endothelial growth factor (VEGF)‐mimetic peptide. Incorporation of QK peptide significantly improved endothelialization and vasculogenesis of the DLP‐printed GelNB hydrogels, reinforcing the applicability of this bioink system in diverse biofabrication applications. Digital light processing (DLP) bioprinting is a highly desirable 3D bioprinting method for fabricating volumetric scaffolds with intricate internal structures, such as perfusable channels. Here, gelatin‐norbornene (GelNB) is used as a photo‐cross‐linkable bioink for DLP bioprinting of soft cell‐laden hydrogels with perfusable and vascularized channels. The DLP‐printed hydrogels are amenable to dynamic conjugation of angiogenic peptides to further enhance vascularization.
doi_str_mv 10.1002/mabi.202300213
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10837335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900473514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4693-37d465de05d29959dc32b3cc5349c9add8a8ab1a023d06c217d0f7bc6f0bda773</originalsourceid><addsrcrecordid>eNqFkb1OHDEUhS2UCAjQUkaW0qTZjX_G43EV8RdAWghFQmt5bM-skdcGeybRpsoj5Bl5ErxasiFpUt17db97dI8OAIcYTTFC5MNCtW5KEKFlwHQL7OIa1xOGBXu16Ru-A97kfIcQ5o0g22CHckZrWvFdYE9d7wbl4cz18wHepKhtzi70kJ7CYxfvkwvDaowdPLdelf7x56_rmNqYgg0WXixNir31sIsJnoW5CtoaeKuyHr1K7ke5iGEfvO6Uz_bgue6Br5_OvpxcTGafzy9PjmYTXdWCTig3Vc2MRcwQIZgwmpKWas1oJbRQxjSqUS1Wxa5BtSaYG9TxVtcdao3inO6Bj2vd-7FdWKNtGJLysphYqLSUUTn59ya4uezjN4lRQzmlrCi8f1ZI8WG0eZALl7X1XgUbxyxJUz4lNaqagr77B72LYwrFnyQCoYpThqtCTdeUTjHnZLvNNxjJVYRyFaHcRFgO3r70sMF_Z1YAsQa-O2-X_5GTV0fHl3_EnwBCP6qZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900473514</pqid></control><display><type>article</type><title>Digital Light Processing 3D Bioprinting of Gelatin‐Norbornene Hydrogel for Enhanced Vascularization</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Duong, Van Thuy ; Lin, Chien‐Chi</creator><creatorcontrib>Duong, Van Thuy ; Lin, Chien‐Chi</creatorcontrib><description>Digital light processing (DLP) bioprinting can be used to fabricate volumetric scaffolds with intricate internal structures, such as perfusable vascular channels. The successful implementation of DLP bioprinting in tissue fabrication requires using suitable photo‐reactive bioinks. Norbornene‐based bioinks have emerged as an attractive alternative to (meth)acrylated macromers in 3D bioprinting owing to their mild and rapid reaction kinetics, high cytocompatibility for in situ cell encapsulation, and adaptability for post‐printing modification or conjugation of bioactive motifs. In this contribution, the development of gelatin‐norbornene (GelNB) is reported as a photo‐cross‐linkable bioink for DLP 3D bioprinting. Low concentrations of GelNB (2–5 wt.%) and poly(ethylene glycol)‐tetra‐thiol (PEG4SH) are DLP‐printed with a wide range of stiffness (G' ≈120 to 4000 Pa) and with perfusable channels. DLP‐printed GelNB hydrogels are highly cytocompatible, as demonstrated by the high viability of the encapsulated human umbilical vein endothelial cells (HUVECs). The encapsulated HUVECs formed an interconnected microvascular network with lumen structures. Notably, the GelNB bioink permitted both in situ tethering and secondary conjugation of QK peptide, a vascular endothelial growth factor (VEGF)‐mimetic peptide. Incorporation of QK peptide significantly improved endothelialization and vasculogenesis of the DLP‐printed GelNB hydrogels, reinforcing the applicability of this bioink system in diverse biofabrication applications. Digital light processing (DLP) bioprinting is a highly desirable 3D bioprinting method for fabricating volumetric scaffolds with intricate internal structures, such as perfusable channels. Here, gelatin‐norbornene (GelNB) is used as a photo‐cross‐linkable bioink for DLP bioprinting of soft cell‐laden hydrogels with perfusable and vascularized channels. The DLP‐printed hydrogels are amenable to dynamic conjugation of angiogenic peptides to further enhance vascularization.</description><identifier>ISSN: 1616-5187</identifier><identifier>ISSN: 1616-5195</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202300213</identifier><identifier>PMID: 37536347</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3-D printers ; Adaptability ; Biocompatibility ; Bioprinting ; Channels ; Conjugation ; digital light processing printing ; Encapsulation ; Endothelial cells ; Fabrication ; Gelatin ; Gelatin - chemistry ; gelatin‐norbornene ; Growth factors ; Human Umbilical Vein Endothelial Cells ; Humans ; Hydrogels ; Hydrogels - chemistry ; Low concentrations ; Microvasculature ; Norbornanes ; Peptides ; Polyethylene glycol ; Printing, Three-Dimensional ; QK peptides ; Reaction kinetics ; soft gels ; Tethering ; Three dimensional printing ; Tissue Engineering ; Tissue Scaffolds - chemistry ; Umbilical vein ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A ; Vascularization</subject><ispartof>Macromolecular bioscience, 2023-12, Vol.23 (12), p.e2300213-n/a</ispartof><rights>2023 The Authors. Macromolecular Bioscience published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4693-37d465de05d29959dc32b3cc5349c9add8a8ab1a023d06c217d0f7bc6f0bda773</citedby><cites>FETCH-LOGICAL-c4693-37d465de05d29959dc32b3cc5349c9add8a8ab1a023d06c217d0f7bc6f0bda773</cites><orcidid>0000-0002-7131-4272 ; 0000-0002-4175-8796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.202300213$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.202300213$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37536347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duong, Van Thuy</creatorcontrib><creatorcontrib>Lin, Chien‐Chi</creatorcontrib><title>Digital Light Processing 3D Bioprinting of Gelatin‐Norbornene Hydrogel for Enhanced Vascularization</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>Digital light processing (DLP) bioprinting can be used to fabricate volumetric scaffolds with intricate internal structures, such as perfusable vascular channels. The successful implementation of DLP bioprinting in tissue fabrication requires using suitable photo‐reactive bioinks. Norbornene‐based bioinks have emerged as an attractive alternative to (meth)acrylated macromers in 3D bioprinting owing to their mild and rapid reaction kinetics, high cytocompatibility for in situ cell encapsulation, and adaptability for post‐printing modification or conjugation of bioactive motifs. In this contribution, the development of gelatin‐norbornene (GelNB) is reported as a photo‐cross‐linkable bioink for DLP 3D bioprinting. Low concentrations of GelNB (2–5 wt.%) and poly(ethylene glycol)‐tetra‐thiol (PEG4SH) are DLP‐printed with a wide range of stiffness (G' ≈120 to 4000 Pa) and with perfusable channels. DLP‐printed GelNB hydrogels are highly cytocompatible, as demonstrated by the high viability of the encapsulated human umbilical vein endothelial cells (HUVECs). The encapsulated HUVECs formed an interconnected microvascular network with lumen structures. Notably, the GelNB bioink permitted both in situ tethering and secondary conjugation of QK peptide, a vascular endothelial growth factor (VEGF)‐mimetic peptide. Incorporation of QK peptide significantly improved endothelialization and vasculogenesis of the DLP‐printed GelNB hydrogels, reinforcing the applicability of this bioink system in diverse biofabrication applications. Digital light processing (DLP) bioprinting is a highly desirable 3D bioprinting method for fabricating volumetric scaffolds with intricate internal structures, such as perfusable channels. Here, gelatin‐norbornene (GelNB) is used as a photo‐cross‐linkable bioink for DLP bioprinting of soft cell‐laden hydrogels with perfusable and vascularized channels. The DLP‐printed hydrogels are amenable to dynamic conjugation of angiogenic peptides to further enhance vascularization.</description><subject>3-D printers</subject><subject>Adaptability</subject><subject>Biocompatibility</subject><subject>Bioprinting</subject><subject>Channels</subject><subject>Conjugation</subject><subject>digital light processing printing</subject><subject>Encapsulation</subject><subject>Endothelial cells</subject><subject>Fabrication</subject><subject>Gelatin</subject><subject>Gelatin - chemistry</subject><subject>gelatin‐norbornene</subject><subject>Growth factors</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Low concentrations</subject><subject>Microvasculature</subject><subject>Norbornanes</subject><subject>Peptides</subject><subject>Polyethylene glycol</subject><subject>Printing, Three-Dimensional</subject><subject>QK peptides</subject><subject>Reaction kinetics</subject><subject>soft gels</subject><subject>Tethering</subject><subject>Three dimensional printing</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Umbilical vein</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A</subject><subject>Vascularization</subject><issn>1616-5187</issn><issn>1616-5195</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkb1OHDEUhS2UCAjQUkaW0qTZjX_G43EV8RdAWghFQmt5bM-skdcGeybRpsoj5Bl5ErxasiFpUt17db97dI8OAIcYTTFC5MNCtW5KEKFlwHQL7OIa1xOGBXu16Ru-A97kfIcQ5o0g22CHckZrWvFdYE9d7wbl4cz18wHepKhtzi70kJ7CYxfvkwvDaowdPLdelf7x56_rmNqYgg0WXixNir31sIsJnoW5CtoaeKuyHr1K7ke5iGEfvO6Uz_bgue6Br5_OvpxcTGafzy9PjmYTXdWCTig3Vc2MRcwQIZgwmpKWas1oJbRQxjSqUS1Wxa5BtSaYG9TxVtcdao3inO6Bj2vd-7FdWKNtGJLysphYqLSUUTn59ya4uezjN4lRQzmlrCi8f1ZI8WG0eZALl7X1XgUbxyxJUz4lNaqagr77B72LYwrFnyQCoYpThqtCTdeUTjHnZLvNNxjJVYRyFaHcRFgO3r70sMF_Z1YAsQa-O2-X_5GTV0fHl3_EnwBCP6qZ</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Duong, Van Thuy</creator><creator>Lin, Chien‐Chi</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7131-4272</orcidid><orcidid>https://orcid.org/0000-0002-4175-8796</orcidid></search><sort><creationdate>202312</creationdate><title>Digital Light Processing 3D Bioprinting of Gelatin‐Norbornene Hydrogel for Enhanced Vascularization</title><author>Duong, Van Thuy ; Lin, Chien‐Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4693-37d465de05d29959dc32b3cc5349c9add8a8ab1a023d06c217d0f7bc6f0bda773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Adaptability</topic><topic>Biocompatibility</topic><topic>Bioprinting</topic><topic>Channels</topic><topic>Conjugation</topic><topic>digital light processing printing</topic><topic>Encapsulation</topic><topic>Endothelial cells</topic><topic>Fabrication</topic><topic>Gelatin</topic><topic>Gelatin - chemistry</topic><topic>gelatin‐norbornene</topic><topic>Growth factors</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Low concentrations</topic><topic>Microvasculature</topic><topic>Norbornanes</topic><topic>Peptides</topic><topic>Polyethylene glycol</topic><topic>Printing, Three-Dimensional</topic><topic>QK peptides</topic><topic>Reaction kinetics</topic><topic>soft gels</topic><topic>Tethering</topic><topic>Three dimensional printing</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Umbilical vein</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duong, Van Thuy</creatorcontrib><creatorcontrib>Lin, Chien‐Chi</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duong, Van Thuy</au><au>Lin, Chien‐Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Light Processing 3D Bioprinting of Gelatin‐Norbornene Hydrogel for Enhanced Vascularization</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2023-12</date><risdate>2023</risdate><volume>23</volume><issue>12</issue><spage>e2300213</spage><epage>n/a</epage><pages>e2300213-n/a</pages><issn>1616-5187</issn><issn>1616-5195</issn><eissn>1616-5195</eissn><abstract>Digital light processing (DLP) bioprinting can be used to fabricate volumetric scaffolds with intricate internal structures, such as perfusable vascular channels. The successful implementation of DLP bioprinting in tissue fabrication requires using suitable photo‐reactive bioinks. Norbornene‐based bioinks have emerged as an attractive alternative to (meth)acrylated macromers in 3D bioprinting owing to their mild and rapid reaction kinetics, high cytocompatibility for in situ cell encapsulation, and adaptability for post‐printing modification or conjugation of bioactive motifs. In this contribution, the development of gelatin‐norbornene (GelNB) is reported as a photo‐cross‐linkable bioink for DLP 3D bioprinting. Low concentrations of GelNB (2–5 wt.%) and poly(ethylene glycol)‐tetra‐thiol (PEG4SH) are DLP‐printed with a wide range of stiffness (G' ≈120 to 4000 Pa) and with perfusable channels. DLP‐printed GelNB hydrogels are highly cytocompatible, as demonstrated by the high viability of the encapsulated human umbilical vein endothelial cells (HUVECs). The encapsulated HUVECs formed an interconnected microvascular network with lumen structures. Notably, the GelNB bioink permitted both in situ tethering and secondary conjugation of QK peptide, a vascular endothelial growth factor (VEGF)‐mimetic peptide. Incorporation of QK peptide significantly improved endothelialization and vasculogenesis of the DLP‐printed GelNB hydrogels, reinforcing the applicability of this bioink system in diverse biofabrication applications. Digital light processing (DLP) bioprinting is a highly desirable 3D bioprinting method for fabricating volumetric scaffolds with intricate internal structures, such as perfusable channels. Here, gelatin‐norbornene (GelNB) is used as a photo‐cross‐linkable bioink for DLP bioprinting of soft cell‐laden hydrogels with perfusable and vascularized channels. The DLP‐printed hydrogels are amenable to dynamic conjugation of angiogenic peptides to further enhance vascularization.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37536347</pmid><doi>10.1002/mabi.202300213</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7131-4272</orcidid><orcidid>https://orcid.org/0000-0002-4175-8796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2023-12, Vol.23 (12), p.e2300213-n/a
issn 1616-5187
1616-5195
1616-5195
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10837335
source MEDLINE; Wiley Journals
subjects 3-D printers
Adaptability
Biocompatibility
Bioprinting
Channels
Conjugation
digital light processing printing
Encapsulation
Endothelial cells
Fabrication
Gelatin
Gelatin - chemistry
gelatin‐norbornene
Growth factors
Human Umbilical Vein Endothelial Cells
Humans
Hydrogels
Hydrogels - chemistry
Low concentrations
Microvasculature
Norbornanes
Peptides
Polyethylene glycol
Printing, Three-Dimensional
QK peptides
Reaction kinetics
soft gels
Tethering
Three dimensional printing
Tissue Engineering
Tissue Scaffolds - chemistry
Umbilical vein
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A
Vascularization
title Digital Light Processing 3D Bioprinting of Gelatin‐Norbornene Hydrogel for Enhanced Vascularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Light%20Processing%203D%20Bioprinting%20of%20Gelatin%E2%80%90Norbornene%20Hydrogel%20for%20Enhanced%20Vascularization&rft.jtitle=Macromolecular%20bioscience&rft.au=Duong,%20Van%20Thuy&rft.date=2023-12&rft.volume=23&rft.issue=12&rft.spage=e2300213&rft.epage=n/a&rft.pages=e2300213-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202300213&rft_dat=%3Cproquest_pubme%3E2900473514%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900473514&rft_id=info:pmid/37536347&rfr_iscdi=true