Digital Light Processing 3D Bioprinting of Gelatin‐Norbornene Hydrogel for Enhanced Vascularization
Digital light processing (DLP) bioprinting can be used to fabricate volumetric scaffolds with intricate internal structures, such as perfusable vascular channels. The successful implementation of DLP bioprinting in tissue fabrication requires using suitable photo‐reactive bioinks. Norbornene‐based b...
Gespeichert in:
Veröffentlicht in: | Macromolecular bioscience 2023-12, Vol.23 (12), p.e2300213-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | e2300213 |
container_title | Macromolecular bioscience |
container_volume | 23 |
creator | Duong, Van Thuy Lin, Chien‐Chi |
description | Digital light processing (DLP) bioprinting can be used to fabricate volumetric scaffolds with intricate internal structures, such as perfusable vascular channels. The successful implementation of DLP bioprinting in tissue fabrication requires using suitable photo‐reactive bioinks. Norbornene‐based bioinks have emerged as an attractive alternative to (meth)acrylated macromers in 3D bioprinting owing to their mild and rapid reaction kinetics, high cytocompatibility for in situ cell encapsulation, and adaptability for post‐printing modification or conjugation of bioactive motifs. In this contribution, the development of gelatin‐norbornene (GelNB) is reported as a photo‐cross‐linkable bioink for DLP 3D bioprinting. Low concentrations of GelNB (2–5 wt.%) and poly(ethylene glycol)‐tetra‐thiol (PEG4SH) are DLP‐printed with a wide range of stiffness (G' ≈120 to 4000 Pa) and with perfusable channels. DLP‐printed GelNB hydrogels are highly cytocompatible, as demonstrated by the high viability of the encapsulated human umbilical vein endothelial cells (HUVECs). The encapsulated HUVECs formed an interconnected microvascular network with lumen structures. Notably, the GelNB bioink permitted both in situ tethering and secondary conjugation of QK peptide, a vascular endothelial growth factor (VEGF)‐mimetic peptide. Incorporation of QK peptide significantly improved endothelialization and vasculogenesis of the DLP‐printed GelNB hydrogels, reinforcing the applicability of this bioink system in diverse biofabrication applications.
Digital light processing (DLP) bioprinting is a highly desirable 3D bioprinting method for fabricating volumetric scaffolds with intricate internal structures, such as perfusable channels. Here, gelatin‐norbornene (GelNB) is used as a photo‐cross‐linkable bioink for DLP bioprinting of soft cell‐laden hydrogels with perfusable and vascularized channels. The DLP‐printed hydrogels are amenable to dynamic conjugation of angiogenic peptides to further enhance vascularization. |
doi_str_mv | 10.1002/mabi.202300213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10837335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900473514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4693-37d465de05d29959dc32b3cc5349c9add8a8ab1a023d06c217d0f7bc6f0bda773</originalsourceid><addsrcrecordid>eNqFkb1OHDEUhS2UCAjQUkaW0qTZjX_G43EV8RdAWghFQmt5bM-skdcGeybRpsoj5Bl5ErxasiFpUt17db97dI8OAIcYTTFC5MNCtW5KEKFlwHQL7OIa1xOGBXu16Ru-A97kfIcQ5o0g22CHckZrWvFdYE9d7wbl4cz18wHepKhtzi70kJ7CYxfvkwvDaowdPLdelf7x56_rmNqYgg0WXixNir31sIsJnoW5CtoaeKuyHr1K7ke5iGEfvO6Uz_bgue6Br5_OvpxcTGafzy9PjmYTXdWCTig3Vc2MRcwQIZgwmpKWas1oJbRQxjSqUS1Wxa5BtSaYG9TxVtcdao3inO6Bj2vd-7FdWKNtGJLysphYqLSUUTn59ya4uezjN4lRQzmlrCi8f1ZI8WG0eZALl7X1XgUbxyxJUz4lNaqagr77B72LYwrFnyQCoYpThqtCTdeUTjHnZLvNNxjJVYRyFaHcRFgO3r70sMF_Z1YAsQa-O2-X_5GTV0fHl3_EnwBCP6qZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900473514</pqid></control><display><type>article</type><title>Digital Light Processing 3D Bioprinting of Gelatin‐Norbornene Hydrogel for Enhanced Vascularization</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Duong, Van Thuy ; Lin, Chien‐Chi</creator><creatorcontrib>Duong, Van Thuy ; Lin, Chien‐Chi</creatorcontrib><description>Digital light processing (DLP) bioprinting can be used to fabricate volumetric scaffolds with intricate internal structures, such as perfusable vascular channels. The successful implementation of DLP bioprinting in tissue fabrication requires using suitable photo‐reactive bioinks. Norbornene‐based bioinks have emerged as an attractive alternative to (meth)acrylated macromers in 3D bioprinting owing to their mild and rapid reaction kinetics, high cytocompatibility for in situ cell encapsulation, and adaptability for post‐printing modification or conjugation of bioactive motifs. In this contribution, the development of gelatin‐norbornene (GelNB) is reported as a photo‐cross‐linkable bioink for DLP 3D bioprinting. Low concentrations of GelNB (2–5 wt.%) and poly(ethylene glycol)‐tetra‐thiol (PEG4SH) are DLP‐printed with a wide range of stiffness (G' ≈120 to 4000 Pa) and with perfusable channels. DLP‐printed GelNB hydrogels are highly cytocompatible, as demonstrated by the high viability of the encapsulated human umbilical vein endothelial cells (HUVECs). The encapsulated HUVECs formed an interconnected microvascular network with lumen structures. Notably, the GelNB bioink permitted both in situ tethering and secondary conjugation of QK peptide, a vascular endothelial growth factor (VEGF)‐mimetic peptide. Incorporation of QK peptide significantly improved endothelialization and vasculogenesis of the DLP‐printed GelNB hydrogels, reinforcing the applicability of this bioink system in diverse biofabrication applications.
Digital light processing (DLP) bioprinting is a highly desirable 3D bioprinting method for fabricating volumetric scaffolds with intricate internal structures, such as perfusable channels. Here, gelatin‐norbornene (GelNB) is used as a photo‐cross‐linkable bioink for DLP bioprinting of soft cell‐laden hydrogels with perfusable and vascularized channels. The DLP‐printed hydrogels are amenable to dynamic conjugation of angiogenic peptides to further enhance vascularization.</description><identifier>ISSN: 1616-5187</identifier><identifier>ISSN: 1616-5195</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202300213</identifier><identifier>PMID: 37536347</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3-D printers ; Adaptability ; Biocompatibility ; Bioprinting ; Channels ; Conjugation ; digital light processing printing ; Encapsulation ; Endothelial cells ; Fabrication ; Gelatin ; Gelatin - chemistry ; gelatin‐norbornene ; Growth factors ; Human Umbilical Vein Endothelial Cells ; Humans ; Hydrogels ; Hydrogels - chemistry ; Low concentrations ; Microvasculature ; Norbornanes ; Peptides ; Polyethylene glycol ; Printing, Three-Dimensional ; QK peptides ; Reaction kinetics ; soft gels ; Tethering ; Three dimensional printing ; Tissue Engineering ; Tissue Scaffolds - chemistry ; Umbilical vein ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A ; Vascularization</subject><ispartof>Macromolecular bioscience, 2023-12, Vol.23 (12), p.e2300213-n/a</ispartof><rights>2023 The Authors. Macromolecular Bioscience published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4693-37d465de05d29959dc32b3cc5349c9add8a8ab1a023d06c217d0f7bc6f0bda773</citedby><cites>FETCH-LOGICAL-c4693-37d465de05d29959dc32b3cc5349c9add8a8ab1a023d06c217d0f7bc6f0bda773</cites><orcidid>0000-0002-7131-4272 ; 0000-0002-4175-8796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.202300213$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.202300213$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37536347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duong, Van Thuy</creatorcontrib><creatorcontrib>Lin, Chien‐Chi</creatorcontrib><title>Digital Light Processing 3D Bioprinting of Gelatin‐Norbornene Hydrogel for Enhanced Vascularization</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>Digital light processing (DLP) bioprinting can be used to fabricate volumetric scaffolds with intricate internal structures, such as perfusable vascular channels. The successful implementation of DLP bioprinting in tissue fabrication requires using suitable photo‐reactive bioinks. Norbornene‐based bioinks have emerged as an attractive alternative to (meth)acrylated macromers in 3D bioprinting owing to their mild and rapid reaction kinetics, high cytocompatibility for in situ cell encapsulation, and adaptability for post‐printing modification or conjugation of bioactive motifs. In this contribution, the development of gelatin‐norbornene (GelNB) is reported as a photo‐cross‐linkable bioink for DLP 3D bioprinting. Low concentrations of GelNB (2–5 wt.%) and poly(ethylene glycol)‐tetra‐thiol (PEG4SH) are DLP‐printed with a wide range of stiffness (G' ≈120 to 4000 Pa) and with perfusable channels. DLP‐printed GelNB hydrogels are highly cytocompatible, as demonstrated by the high viability of the encapsulated human umbilical vein endothelial cells (HUVECs). The encapsulated HUVECs formed an interconnected microvascular network with lumen structures. Notably, the GelNB bioink permitted both in situ tethering and secondary conjugation of QK peptide, a vascular endothelial growth factor (VEGF)‐mimetic peptide. Incorporation of QK peptide significantly improved endothelialization and vasculogenesis of the DLP‐printed GelNB hydrogels, reinforcing the applicability of this bioink system in diverse biofabrication applications.
Digital light processing (DLP) bioprinting is a highly desirable 3D bioprinting method for fabricating volumetric scaffolds with intricate internal structures, such as perfusable channels. Here, gelatin‐norbornene (GelNB) is used as a photo‐cross‐linkable bioink for DLP bioprinting of soft cell‐laden hydrogels with perfusable and vascularized channels. The DLP‐printed hydrogels are amenable to dynamic conjugation of angiogenic peptides to further enhance vascularization.</description><subject>3-D printers</subject><subject>Adaptability</subject><subject>Biocompatibility</subject><subject>Bioprinting</subject><subject>Channels</subject><subject>Conjugation</subject><subject>digital light processing printing</subject><subject>Encapsulation</subject><subject>Endothelial cells</subject><subject>Fabrication</subject><subject>Gelatin</subject><subject>Gelatin - chemistry</subject><subject>gelatin‐norbornene</subject><subject>Growth factors</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Low concentrations</subject><subject>Microvasculature</subject><subject>Norbornanes</subject><subject>Peptides</subject><subject>Polyethylene glycol</subject><subject>Printing, Three-Dimensional</subject><subject>QK peptides</subject><subject>Reaction kinetics</subject><subject>soft gels</subject><subject>Tethering</subject><subject>Three dimensional printing</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Umbilical vein</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A</subject><subject>Vascularization</subject><issn>1616-5187</issn><issn>1616-5195</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkb1OHDEUhS2UCAjQUkaW0qTZjX_G43EV8RdAWghFQmt5bM-skdcGeybRpsoj5Bl5ErxasiFpUt17db97dI8OAIcYTTFC5MNCtW5KEKFlwHQL7OIa1xOGBXu16Ru-A97kfIcQ5o0g22CHckZrWvFdYE9d7wbl4cz18wHepKhtzi70kJ7CYxfvkwvDaowdPLdelf7x56_rmNqYgg0WXixNir31sIsJnoW5CtoaeKuyHr1K7ke5iGEfvO6Uz_bgue6Br5_OvpxcTGafzy9PjmYTXdWCTig3Vc2MRcwQIZgwmpKWas1oJbRQxjSqUS1Wxa5BtSaYG9TxVtcdao3inO6Bj2vd-7FdWKNtGJLysphYqLSUUTn59ya4uezjN4lRQzmlrCi8f1ZI8WG0eZALl7X1XgUbxyxJUz4lNaqagr77B72LYwrFnyQCoYpThqtCTdeUTjHnZLvNNxjJVYRyFaHcRFgO3r70sMF_Z1YAsQa-O2-X_5GTV0fHl3_EnwBCP6qZ</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Duong, Van Thuy</creator><creator>Lin, Chien‐Chi</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7131-4272</orcidid><orcidid>https://orcid.org/0000-0002-4175-8796</orcidid></search><sort><creationdate>202312</creationdate><title>Digital Light Processing 3D Bioprinting of Gelatin‐Norbornene Hydrogel for Enhanced Vascularization</title><author>Duong, Van Thuy ; Lin, Chien‐Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4693-37d465de05d29959dc32b3cc5349c9add8a8ab1a023d06c217d0f7bc6f0bda773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Adaptability</topic><topic>Biocompatibility</topic><topic>Bioprinting</topic><topic>Channels</topic><topic>Conjugation</topic><topic>digital light processing printing</topic><topic>Encapsulation</topic><topic>Endothelial cells</topic><topic>Fabrication</topic><topic>Gelatin</topic><topic>Gelatin - chemistry</topic><topic>gelatin‐norbornene</topic><topic>Growth factors</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Low concentrations</topic><topic>Microvasculature</topic><topic>Norbornanes</topic><topic>Peptides</topic><topic>Polyethylene glycol</topic><topic>Printing, Three-Dimensional</topic><topic>QK peptides</topic><topic>Reaction kinetics</topic><topic>soft gels</topic><topic>Tethering</topic><topic>Three dimensional printing</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Umbilical vein</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duong, Van Thuy</creatorcontrib><creatorcontrib>Lin, Chien‐Chi</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duong, Van Thuy</au><au>Lin, Chien‐Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Light Processing 3D Bioprinting of Gelatin‐Norbornene Hydrogel for Enhanced Vascularization</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2023-12</date><risdate>2023</risdate><volume>23</volume><issue>12</issue><spage>e2300213</spage><epage>n/a</epage><pages>e2300213-n/a</pages><issn>1616-5187</issn><issn>1616-5195</issn><eissn>1616-5195</eissn><abstract>Digital light processing (DLP) bioprinting can be used to fabricate volumetric scaffolds with intricate internal structures, such as perfusable vascular channels. The successful implementation of DLP bioprinting in tissue fabrication requires using suitable photo‐reactive bioinks. Norbornene‐based bioinks have emerged as an attractive alternative to (meth)acrylated macromers in 3D bioprinting owing to their mild and rapid reaction kinetics, high cytocompatibility for in situ cell encapsulation, and adaptability for post‐printing modification or conjugation of bioactive motifs. In this contribution, the development of gelatin‐norbornene (GelNB) is reported as a photo‐cross‐linkable bioink for DLP 3D bioprinting. Low concentrations of GelNB (2–5 wt.%) and poly(ethylene glycol)‐tetra‐thiol (PEG4SH) are DLP‐printed with a wide range of stiffness (G' ≈120 to 4000 Pa) and with perfusable channels. DLP‐printed GelNB hydrogels are highly cytocompatible, as demonstrated by the high viability of the encapsulated human umbilical vein endothelial cells (HUVECs). The encapsulated HUVECs formed an interconnected microvascular network with lumen structures. Notably, the GelNB bioink permitted both in situ tethering and secondary conjugation of QK peptide, a vascular endothelial growth factor (VEGF)‐mimetic peptide. Incorporation of QK peptide significantly improved endothelialization and vasculogenesis of the DLP‐printed GelNB hydrogels, reinforcing the applicability of this bioink system in diverse biofabrication applications.
Digital light processing (DLP) bioprinting is a highly desirable 3D bioprinting method for fabricating volumetric scaffolds with intricate internal structures, such as perfusable channels. Here, gelatin‐norbornene (GelNB) is used as a photo‐cross‐linkable bioink for DLP bioprinting of soft cell‐laden hydrogels with perfusable and vascularized channels. The DLP‐printed hydrogels are amenable to dynamic conjugation of angiogenic peptides to further enhance vascularization.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37536347</pmid><doi>10.1002/mabi.202300213</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7131-4272</orcidid><orcidid>https://orcid.org/0000-0002-4175-8796</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5187 |
ispartof | Macromolecular bioscience, 2023-12, Vol.23 (12), p.e2300213-n/a |
issn | 1616-5187 1616-5195 1616-5195 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10837335 |
source | MEDLINE; Wiley Journals |
subjects | 3-D printers Adaptability Biocompatibility Bioprinting Channels Conjugation digital light processing printing Encapsulation Endothelial cells Fabrication Gelatin Gelatin - chemistry gelatin‐norbornene Growth factors Human Umbilical Vein Endothelial Cells Humans Hydrogels Hydrogels - chemistry Low concentrations Microvasculature Norbornanes Peptides Polyethylene glycol Printing, Three-Dimensional QK peptides Reaction kinetics soft gels Tethering Three dimensional printing Tissue Engineering Tissue Scaffolds - chemistry Umbilical vein Vascular endothelial growth factor Vascular Endothelial Growth Factor A Vascularization |
title | Digital Light Processing 3D Bioprinting of Gelatin‐Norbornene Hydrogel for Enhanced Vascularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Light%20Processing%203D%20Bioprinting%20of%20Gelatin%E2%80%90Norbornene%20Hydrogel%20for%20Enhanced%20Vascularization&rft.jtitle=Macromolecular%20bioscience&rft.au=Duong,%20Van%20Thuy&rft.date=2023-12&rft.volume=23&rft.issue=12&rft.spage=e2300213&rft.epage=n/a&rft.pages=e2300213-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202300213&rft_dat=%3Cproquest_pubme%3E2900473514%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900473514&rft_id=info:pmid/37536347&rfr_iscdi=true |