Optimization of Rituximab Therapy in Adult Patients With PLA2R1-Associated Membranous Nephropathy With Artificial Intelligence

Rituximab is a first-line treatment for membranous nephropathy. Nephrotic syndrome limits rituximab exposure due to urinary drug loss. Rituximab underdosing (serum level 

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kidney international reports 2024-01, Vol.9 (1), p.134-144
Hauptverfasser: Destere, Alexandre, Teisseyre, Maxime, Merino, Diane, Cremoni, Marion, Gérard, Alexandre O, Crepin, Thomas, Jourde-Chiche, Noémie, Graça, Daisy, Zorzi, Kévin, Fernandez, Céline, Brglez, Vesna, Benzaken, Sylvia, Esnault, Vincent L M, Benito, Sylvain, Drici, Milou-Daniel, Seitz-Polski, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1
container_start_page 134
container_title Kidney international reports
container_volume 9
creator Destere, Alexandre
Teisseyre, Maxime
Merino, Diane
Cremoni, Marion
Gérard, Alexandre O
Crepin, Thomas
Jourde-Chiche, Noémie
Graça, Daisy
Zorzi, Kévin
Fernandez, Céline
Brglez, Vesna
Benzaken, Sylvia
Esnault, Vincent L M
Benito, Sylvain
Drici, Milou-Daniel
Seitz-Polski, Barbara
description Rituximab is a first-line treatment for membranous nephropathy. Nephrotic syndrome limits rituximab exposure due to urinary drug loss. Rituximab underdosing (serum level 
doi_str_mv 10.1016/j.ekir.2023.10.023
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10831377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922453472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-d648abac9710b3e8a1c7702e988bf60062a64f810d6b0015e16bd0f3ac6006e73</originalsourceid><addsrcrecordid>eNpdUU1v1DAUtBCIVqV_gAPyEQ5Z_JG1kxOKqkIrLW1VFXG0HOel8ZLEwXYqlgO_HUfbVm1Pz5o3M9a8Qeg9JStKqPi8XcEv61eMMJ6AVRqv0CHLRZERlpevn7wP0HEIW0IIlWJdkuItOuAFp0yW8hD9u5yiHexfHa0bsWvxtY3zHzvoGt904PW0w3bEVTP3EV8lEowx4J82dvhqU7FrmlUhOGN1hAZ_h6H2enRzwBcwdd5NOna7Pbvy0bY2EXt8Pkboe3sLo4F36E2r-wDH9_MI_fh6enNylm0uv52fVJvM5FzGrBF5oWttSklJzaHQ1EhJGJRFUbeCEMG0yNuCkkbUKecaqKgb0nJtliVIfoS-7H2nuR6gMSmG172afErqd8ppq55vRtupW3enKEmn4nJx-LR36F7ozqqNWjCSc5aOKu9o4n68_8273zOEqAYbTAqtR0jXUaxkLF_zXLJEZXuq8S4ED-2jNyVqKVpt1VK0WopesDSS6MPTNI-Sh1r5f4HXppY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922453472</pqid></control><display><type>article</type><title>Optimization of Rituximab Therapy in Adult Patients With PLA2R1-Associated Membranous Nephropathy With Artificial Intelligence</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Destere, Alexandre ; Teisseyre, Maxime ; Merino, Diane ; Cremoni, Marion ; Gérard, Alexandre O ; Crepin, Thomas ; Jourde-Chiche, Noémie ; Graça, Daisy ; Zorzi, Kévin ; Fernandez, Céline ; Brglez, Vesna ; Benzaken, Sylvia ; Esnault, Vincent L M ; Benito, Sylvain ; Drici, Milou-Daniel ; Seitz-Polski, Barbara</creator><creatorcontrib>Destere, Alexandre ; Teisseyre, Maxime ; Merino, Diane ; Cremoni, Marion ; Gérard, Alexandre O ; Crepin, Thomas ; Jourde-Chiche, Noémie ; Graça, Daisy ; Zorzi, Kévin ; Fernandez, Céline ; Brglez, Vesna ; Benzaken, Sylvia ; Esnault, Vincent L M ; Benito, Sylvain ; Drici, Milou-Daniel ; Seitz-Polski, Barbara</creatorcontrib><description>Rituximab is a first-line treatment for membranous nephropathy. Nephrotic syndrome limits rituximab exposure due to urinary drug loss. Rituximab underdosing (serum level &lt;2 μg/ml at month-3) is a risk factor for treatment failure. We developed a machine learning algorithm to predict the risk of underdosing based on patients' characteristics at rituximab infusion. We investigated the relationship between the predicted risk of underdosing and the cumulative dose of rituximab required to achieve remission. Rituximab concentrations were measured at month-3 in 92 sera from adult patients with primary membranous nephropathy, split into a training (75%) and a testing set (25%). A forward-backward machine-learning procedure determined the best combination of variables to predict rituximab underdosing in the training data set, which was tested in the test set. The performances were evaluated for accuracy, sensitivity, and specificity in 10-fold cross-validation training and test sets. The best variables combination to predict rituximab underdosing included age, gender, body surface area (BSA), anti-phospholipase A2 receptor type 1 (anti-PLA2R1) antibody titer on day-0, serum albumin on day-0 and day-15, and serum creatinine on day-0 and day-15. The accuracy, sensitivity, and specificity were respectively 79.4%, 78.7%, and 81.0% (training data set), and 79.2%, 84.6% and 72.7% (testing data set). In both sets, the algorithm performed significantly better than chance (  &lt; 0.05). Patients with an initial high probability of underdosing experienced a longer time to remission with higher rituximab cumulative doses required to achieved remission. This algorithm could allow for early intensification of rituximab regimen in patients at high estimated risk of underdosing to increase the likelihood of remission.</description><identifier>ISSN: 2468-0249</identifier><identifier>EISSN: 2468-0249</identifier><identifier>DOI: 10.1016/j.ekir.2023.10.023</identifier><identifier>PMID: 38312797</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Artificial Intelligence ; Clinical Research ; Computer Science ; Human health and pathology ; Immunology ; Immunotherapy ; Life Sciences ; Urology and Nephrology</subject><ispartof>Kidney international reports, 2024-01, Vol.9 (1), p.134-144</ispartof><rights>2023 Published by Elsevier, Inc., on behalf of the International Society of Nephrology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 Published by Elsevier, Inc., on behalf of the International Society of Nephrology. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-d648abac9710b3e8a1c7702e988bf60062a64f810d6b0015e16bd0f3ac6006e73</citedby><cites>FETCH-LOGICAL-c437t-d648abac9710b3e8a1c7702e988bf60062a64f810d6b0015e16bd0f3ac6006e73</cites><orcidid>0000-0001-9315-1577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831377/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831377/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38312797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04321277$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Destere, Alexandre</creatorcontrib><creatorcontrib>Teisseyre, Maxime</creatorcontrib><creatorcontrib>Merino, Diane</creatorcontrib><creatorcontrib>Cremoni, Marion</creatorcontrib><creatorcontrib>Gérard, Alexandre O</creatorcontrib><creatorcontrib>Crepin, Thomas</creatorcontrib><creatorcontrib>Jourde-Chiche, Noémie</creatorcontrib><creatorcontrib>Graça, Daisy</creatorcontrib><creatorcontrib>Zorzi, Kévin</creatorcontrib><creatorcontrib>Fernandez, Céline</creatorcontrib><creatorcontrib>Brglez, Vesna</creatorcontrib><creatorcontrib>Benzaken, Sylvia</creatorcontrib><creatorcontrib>Esnault, Vincent L M</creatorcontrib><creatorcontrib>Benito, Sylvain</creatorcontrib><creatorcontrib>Drici, Milou-Daniel</creatorcontrib><creatorcontrib>Seitz-Polski, Barbara</creatorcontrib><title>Optimization of Rituximab Therapy in Adult Patients With PLA2R1-Associated Membranous Nephropathy With Artificial Intelligence</title><title>Kidney international reports</title><addtitle>Kidney Int Rep</addtitle><description>Rituximab is a first-line treatment for membranous nephropathy. Nephrotic syndrome limits rituximab exposure due to urinary drug loss. Rituximab underdosing (serum level &lt;2 μg/ml at month-3) is a risk factor for treatment failure. We developed a machine learning algorithm to predict the risk of underdosing based on patients' characteristics at rituximab infusion. We investigated the relationship between the predicted risk of underdosing and the cumulative dose of rituximab required to achieve remission. Rituximab concentrations were measured at month-3 in 92 sera from adult patients with primary membranous nephropathy, split into a training (75%) and a testing set (25%). A forward-backward machine-learning procedure determined the best combination of variables to predict rituximab underdosing in the training data set, which was tested in the test set. The performances were evaluated for accuracy, sensitivity, and specificity in 10-fold cross-validation training and test sets. The best variables combination to predict rituximab underdosing included age, gender, body surface area (BSA), anti-phospholipase A2 receptor type 1 (anti-PLA2R1) antibody titer on day-0, serum albumin on day-0 and day-15, and serum creatinine on day-0 and day-15. The accuracy, sensitivity, and specificity were respectively 79.4%, 78.7%, and 81.0% (training data set), and 79.2%, 84.6% and 72.7% (testing data set). In both sets, the algorithm performed significantly better than chance (  &lt; 0.05). Patients with an initial high probability of underdosing experienced a longer time to remission with higher rituximab cumulative doses required to achieved remission. This algorithm could allow for early intensification of rituximab regimen in patients at high estimated risk of underdosing to increase the likelihood of remission.</description><subject>Artificial Intelligence</subject><subject>Clinical Research</subject><subject>Computer Science</subject><subject>Human health and pathology</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Life Sciences</subject><subject>Urology and Nephrology</subject><issn>2468-0249</issn><issn>2468-0249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdUU1v1DAUtBCIVqV_gAPyEQ5Z_JG1kxOKqkIrLW1VFXG0HOel8ZLEwXYqlgO_HUfbVm1Pz5o3M9a8Qeg9JStKqPi8XcEv61eMMJ6AVRqv0CHLRZERlpevn7wP0HEIW0IIlWJdkuItOuAFp0yW8hD9u5yiHexfHa0bsWvxtY3zHzvoGt904PW0w3bEVTP3EV8lEowx4J82dvhqU7FrmlUhOGN1hAZ_h6H2enRzwBcwdd5NOna7Pbvy0bY2EXt8Pkboe3sLo4F36E2r-wDH9_MI_fh6enNylm0uv52fVJvM5FzGrBF5oWttSklJzaHQ1EhJGJRFUbeCEMG0yNuCkkbUKecaqKgb0nJtliVIfoS-7H2nuR6gMSmG172afErqd8ppq55vRtupW3enKEmn4nJx-LR36F7ozqqNWjCSc5aOKu9o4n68_8273zOEqAYbTAqtR0jXUaxkLF_zXLJEZXuq8S4ED-2jNyVqKVpt1VK0WopesDSS6MPTNI-Sh1r5f4HXppY</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Destere, Alexandre</creator><creator>Teisseyre, Maxime</creator><creator>Merino, Diane</creator><creator>Cremoni, Marion</creator><creator>Gérard, Alexandre O</creator><creator>Crepin, Thomas</creator><creator>Jourde-Chiche, Noémie</creator><creator>Graça, Daisy</creator><creator>Zorzi, Kévin</creator><creator>Fernandez, Céline</creator><creator>Brglez, Vesna</creator><creator>Benzaken, Sylvia</creator><creator>Esnault, Vincent L M</creator><creator>Benito, Sylvain</creator><creator>Drici, Milou-Daniel</creator><creator>Seitz-Polski, Barbara</creator><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9315-1577</orcidid></search><sort><creationdate>20240101</creationdate><title>Optimization of Rituximab Therapy in Adult Patients With PLA2R1-Associated Membranous Nephropathy With Artificial Intelligence</title><author>Destere, Alexandre ; Teisseyre, Maxime ; Merino, Diane ; Cremoni, Marion ; Gérard, Alexandre O ; Crepin, Thomas ; Jourde-Chiche, Noémie ; Graça, Daisy ; Zorzi, Kévin ; Fernandez, Céline ; Brglez, Vesna ; Benzaken, Sylvia ; Esnault, Vincent L M ; Benito, Sylvain ; Drici, Milou-Daniel ; Seitz-Polski, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-d648abac9710b3e8a1c7702e988bf60062a64f810d6b0015e16bd0f3ac6006e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Clinical Research</topic><topic>Computer Science</topic><topic>Human health and pathology</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Life Sciences</topic><topic>Urology and Nephrology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Destere, Alexandre</creatorcontrib><creatorcontrib>Teisseyre, Maxime</creatorcontrib><creatorcontrib>Merino, Diane</creatorcontrib><creatorcontrib>Cremoni, Marion</creatorcontrib><creatorcontrib>Gérard, Alexandre O</creatorcontrib><creatorcontrib>Crepin, Thomas</creatorcontrib><creatorcontrib>Jourde-Chiche, Noémie</creatorcontrib><creatorcontrib>Graça, Daisy</creatorcontrib><creatorcontrib>Zorzi, Kévin</creatorcontrib><creatorcontrib>Fernandez, Céline</creatorcontrib><creatorcontrib>Brglez, Vesna</creatorcontrib><creatorcontrib>Benzaken, Sylvia</creatorcontrib><creatorcontrib>Esnault, Vincent L M</creatorcontrib><creatorcontrib>Benito, Sylvain</creatorcontrib><creatorcontrib>Drici, Milou-Daniel</creatorcontrib><creatorcontrib>Seitz-Polski, Barbara</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Kidney international reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Destere, Alexandre</au><au>Teisseyre, Maxime</au><au>Merino, Diane</au><au>Cremoni, Marion</au><au>Gérard, Alexandre O</au><au>Crepin, Thomas</au><au>Jourde-Chiche, Noémie</au><au>Graça, Daisy</au><au>Zorzi, Kévin</au><au>Fernandez, Céline</au><au>Brglez, Vesna</au><au>Benzaken, Sylvia</au><au>Esnault, Vincent L M</au><au>Benito, Sylvain</au><au>Drici, Milou-Daniel</au><au>Seitz-Polski, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Rituximab Therapy in Adult Patients With PLA2R1-Associated Membranous Nephropathy With Artificial Intelligence</atitle><jtitle>Kidney international reports</jtitle><addtitle>Kidney Int Rep</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>134</spage><epage>144</epage><pages>134-144</pages><issn>2468-0249</issn><eissn>2468-0249</eissn><abstract>Rituximab is a first-line treatment for membranous nephropathy. Nephrotic syndrome limits rituximab exposure due to urinary drug loss. Rituximab underdosing (serum level &lt;2 μg/ml at month-3) is a risk factor for treatment failure. We developed a machine learning algorithm to predict the risk of underdosing based on patients' characteristics at rituximab infusion. We investigated the relationship between the predicted risk of underdosing and the cumulative dose of rituximab required to achieve remission. Rituximab concentrations were measured at month-3 in 92 sera from adult patients with primary membranous nephropathy, split into a training (75%) and a testing set (25%). A forward-backward machine-learning procedure determined the best combination of variables to predict rituximab underdosing in the training data set, which was tested in the test set. The performances were evaluated for accuracy, sensitivity, and specificity in 10-fold cross-validation training and test sets. The best variables combination to predict rituximab underdosing included age, gender, body surface area (BSA), anti-phospholipase A2 receptor type 1 (anti-PLA2R1) antibody titer on day-0, serum albumin on day-0 and day-15, and serum creatinine on day-0 and day-15. The accuracy, sensitivity, and specificity were respectively 79.4%, 78.7%, and 81.0% (training data set), and 79.2%, 84.6% and 72.7% (testing data set). In both sets, the algorithm performed significantly better than chance (  &lt; 0.05). Patients with an initial high probability of underdosing experienced a longer time to remission with higher rituximab cumulative doses required to achieved remission. This algorithm could allow for early intensification of rituximab regimen in patients at high estimated risk of underdosing to increase the likelihood of remission.</abstract><cop>United States</cop><pub>Elsevier</pub><pmid>38312797</pmid><doi>10.1016/j.ekir.2023.10.023</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9315-1577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2468-0249
ispartof Kidney international reports, 2024-01, Vol.9 (1), p.134-144
issn 2468-0249
2468-0249
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10831377
source EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Artificial Intelligence
Clinical Research
Computer Science
Human health and pathology
Immunology
Immunotherapy
Life Sciences
Urology and Nephrology
title Optimization of Rituximab Therapy in Adult Patients With PLA2R1-Associated Membranous Nephropathy With Artificial Intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Rituximab%20Therapy%20in%20Adult%20Patients%20With%20PLA2R1-Associated%20Membranous%20Nephropathy%20With%20Artificial%20Intelligence&rft.jtitle=Kidney%20international%20reports&rft.au=Destere,%20Alexandre&rft.date=2024-01-01&rft.volume=9&rft.issue=1&rft.spage=134&rft.epage=144&rft.pages=134-144&rft.issn=2468-0249&rft.eissn=2468-0249&rft_id=info:doi/10.1016/j.ekir.2023.10.023&rft_dat=%3Cproquest_pubme%3E2922453472%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922453472&rft_id=info:pmid/38312797&rfr_iscdi=true