Cell-type-directed design of synthetic enhancers

Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes 1 . It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-02, Vol.626 (7997), p.212-220
Hauptverfasser: Taskiran, Ibrahim I., Spanier, Katina I., Dickmänken, Hannah, Kempynck, Niklas, Pančíková, Alexandra, Ekşi, Eren Can, Hulselmans, Gert, Ismail, Joy N., Theunis, Koen, Vandepoel, Roel, Christiaens, Valerie, Mauduit, David, Aerts, Stein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue 7997
container_start_page 212
container_title Nature (London)
container_volume 626
creator Taskiran, Ibrahim I.
Spanier, Katina I.
Dickmänken, Hannah
Kempynck, Niklas
Pančíková, Alexandra
Ekşi, Eren Can
Hulselmans, Gert
Ismail, Joy N.
Theunis, Koen
Vandepoel, Roel
Christiaens, Valerie
Mauduit, David
Aerts, Stein
description Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes 1 . It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models 2 – 6 , can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create ‘dual-code’ enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of Drosophila enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states. Deep learning models were used to design synthetic cell-type-specific enhancers that work in fruit fly brains and human cell lines, an approach that also provides insights into these gene regulatory elements.
doi_str_mv 10.1038/s41586-023-06936-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923071554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f76e329fc1b9a04c6c3c2f4055865ca677ac4db8940715116126aebe3fc9e1b53</originalsourceid><addsrcrecordid>eNp9kTlPAzEQhS0EgnD8AQoUiYbGML53K4QiLgmJBmrL651NNkq8wd4g5d9jSDgLKhfzzfN78wg5ZnDOQBQXSTJVaApcUNCl0JRvkQGTRlOpC7NNBgC8oFAIvUf2U5oCgGJG7pI9UUChJSsHBEY4m9F-tUBatxF9j_WwxtSOw7BrhmkV-gn2rR9imLjgMaZDstO4WcKjzXtAnm-un0Z39OHx9n509UC9NKqnjdEoeNl4VpUOpNdeeN5IUNmx8k4b47ysq6KUYJhiTDOuHVYoGl8iq5Q4IJdr3cWymmPtMfTRzewitnMXV7Zzrf09Ce3EjrtXy3JgyJfJCmcbhdi9LDH1dt4mn-O6gN0yWV4CL5XWhmX09A867ZYx5HyZ4uLdopKZ4mvKxy6liM2XGwb2vRG7bsTmRuxHI5bnpZOfOb5WPivIgFgDKY_CGOP33__IvgElT5YE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923071554</pqid></control><display><type>article</type><title>Cell-type-directed design of synthetic enhancers</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Taskiran, Ibrahim I. ; Spanier, Katina I. ; Dickmänken, Hannah ; Kempynck, Niklas ; Pančíková, Alexandra ; Ekşi, Eren Can ; Hulselmans, Gert ; Ismail, Joy N. ; Theunis, Koen ; Vandepoel, Roel ; Christiaens, Valerie ; Mauduit, David ; Aerts, Stein</creator><creatorcontrib>Taskiran, Ibrahim I. ; Spanier, Katina I. ; Dickmänken, Hannah ; Kempynck, Niklas ; Pančíková, Alexandra ; Ekşi, Eren Can ; Hulselmans, Gert ; Ismail, Joy N. ; Theunis, Koen ; Vandepoel, Roel ; Christiaens, Valerie ; Mauduit, David ; Aerts, Stein</creatorcontrib><description>Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes 1 . It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models 2 – 6 , can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create ‘dual-code’ enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of Drosophila enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states. Deep learning models were used to design synthetic cell-type-specific enhancers that work in fruit fly brains and human cell lines, an approach that also provides insights into these gene regulatory elements.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06936-2</identifier><identifier>PMID: 38086419</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/1 ; 14/19 ; 14/35 ; 38/15 ; 42/109 ; 631/114/1305 ; 631/208/200 ; 631/553/552 ; 631/61/212 ; 64/24 ; Animals ; Animals, Genetically Modified - genetics ; Binding sites ; Brain ; Brain - cytology ; Cells - classification ; Cells - metabolism ; Deep Learning ; Design ; Drosophila melanogaster - cytology ; Drosophila melanogaster - genetics ; Enhancer Elements, Genetic - genetics ; Enhancers ; Gene expression ; Gene Expression Regulation ; Genomes ; Glial cells ; Humanities and Social Sciences ; Humans ; Insects ; multidisciplinary ; Mutation ; Neuroglia - metabolism ; Nucleotides ; Repressor Proteins - metabolism ; Science ; Science (multidisciplinary) ; Synthetic Biology ; Transcription factors ; Transcription Factors - metabolism ; Transgenic animals</subject><ispartof>Nature (London), 2024-02, Vol.626 (7997), p.212-220</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Nature Publishing Group Feb 1, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f76e329fc1b9a04c6c3c2f4055865ca677ac4db8940715116126aebe3fc9e1b53</citedby><cites>FETCH-LOGICAL-c475t-f76e329fc1b9a04c6c3c2f4055865ca677ac4db8940715116126aebe3fc9e1b53</cites><orcidid>0000-0002-0699-6676 ; 0000-0002-0693-132X ; 0000-0002-8006-0315 ; 0000-0002-0104-4844 ; 0000-0002-3122-9858 ; 0000-0002-1375-4157 ; 0000-0002-2045-227X ; 0000-0002-5077-5264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-023-06936-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-023-06936-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38086419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taskiran, Ibrahim I.</creatorcontrib><creatorcontrib>Spanier, Katina I.</creatorcontrib><creatorcontrib>Dickmänken, Hannah</creatorcontrib><creatorcontrib>Kempynck, Niklas</creatorcontrib><creatorcontrib>Pančíková, Alexandra</creatorcontrib><creatorcontrib>Ekşi, Eren Can</creatorcontrib><creatorcontrib>Hulselmans, Gert</creatorcontrib><creatorcontrib>Ismail, Joy N.</creatorcontrib><creatorcontrib>Theunis, Koen</creatorcontrib><creatorcontrib>Vandepoel, Roel</creatorcontrib><creatorcontrib>Christiaens, Valerie</creatorcontrib><creatorcontrib>Mauduit, David</creatorcontrib><creatorcontrib>Aerts, Stein</creatorcontrib><title>Cell-type-directed design of synthetic enhancers</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes 1 . It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models 2 – 6 , can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create ‘dual-code’ enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of Drosophila enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states. Deep learning models were used to design synthetic cell-type-specific enhancers that work in fruit fly brains and human cell lines, an approach that also provides insights into these gene regulatory elements.</description><subject>14/1</subject><subject>14/19</subject><subject>14/35</subject><subject>38/15</subject><subject>42/109</subject><subject>631/114/1305</subject><subject>631/208/200</subject><subject>631/553/552</subject><subject>631/61/212</subject><subject>64/24</subject><subject>Animals</subject><subject>Animals, Genetically Modified - genetics</subject><subject>Binding sites</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Cells - classification</subject><subject>Cells - metabolism</subject><subject>Deep Learning</subject><subject>Design</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Enhancers</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genomes</subject><subject>Glial cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Insects</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neuroglia - metabolism</subject><subject>Nucleotides</subject><subject>Repressor Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synthetic Biology</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Transgenic animals</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kTlPAzEQhS0EgnD8AQoUiYbGML53K4QiLgmJBmrL651NNkq8wd4g5d9jSDgLKhfzzfN78wg5ZnDOQBQXSTJVaApcUNCl0JRvkQGTRlOpC7NNBgC8oFAIvUf2U5oCgGJG7pI9UUChJSsHBEY4m9F-tUBatxF9j_WwxtSOw7BrhmkV-gn2rR9imLjgMaZDstO4WcKjzXtAnm-un0Z39OHx9n509UC9NKqnjdEoeNl4VpUOpNdeeN5IUNmx8k4b47ysq6KUYJhiTDOuHVYoGl8iq5Q4IJdr3cWymmPtMfTRzewitnMXV7Zzrf09Ce3EjrtXy3JgyJfJCmcbhdi9LDH1dt4mn-O6gN0yWV4CL5XWhmX09A867ZYx5HyZ4uLdopKZ4mvKxy6liM2XGwb2vRG7bsTmRuxHI5bnpZOfOb5WPivIgFgDKY_CGOP33__IvgElT5YE</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Taskiran, Ibrahim I.</creator><creator>Spanier, Katina I.</creator><creator>Dickmänken, Hannah</creator><creator>Kempynck, Niklas</creator><creator>Pančíková, Alexandra</creator><creator>Ekşi, Eren Can</creator><creator>Hulselmans, Gert</creator><creator>Ismail, Joy N.</creator><creator>Theunis, Koen</creator><creator>Vandepoel, Roel</creator><creator>Christiaens, Valerie</creator><creator>Mauduit, David</creator><creator>Aerts, Stein</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0699-6676</orcidid><orcidid>https://orcid.org/0000-0002-0693-132X</orcidid><orcidid>https://orcid.org/0000-0002-8006-0315</orcidid><orcidid>https://orcid.org/0000-0002-0104-4844</orcidid><orcidid>https://orcid.org/0000-0002-3122-9858</orcidid><orcidid>https://orcid.org/0000-0002-1375-4157</orcidid><orcidid>https://orcid.org/0000-0002-2045-227X</orcidid><orcidid>https://orcid.org/0000-0002-5077-5264</orcidid></search><sort><creationdate>20240201</creationdate><title>Cell-type-directed design of synthetic enhancers</title><author>Taskiran, Ibrahim I. ; Spanier, Katina I. ; Dickmänken, Hannah ; Kempynck, Niklas ; Pančíková, Alexandra ; Ekşi, Eren Can ; Hulselmans, Gert ; Ismail, Joy N. ; Theunis, Koen ; Vandepoel, Roel ; Christiaens, Valerie ; Mauduit, David ; Aerts, Stein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f76e329fc1b9a04c6c3c2f4055865ca677ac4db8940715116126aebe3fc9e1b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14/1</topic><topic>14/19</topic><topic>14/35</topic><topic>38/15</topic><topic>42/109</topic><topic>631/114/1305</topic><topic>631/208/200</topic><topic>631/553/552</topic><topic>631/61/212</topic><topic>64/24</topic><topic>Animals</topic><topic>Animals, Genetically Modified - genetics</topic><topic>Binding sites</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Cells - classification</topic><topic>Cells - metabolism</topic><topic>Deep Learning</topic><topic>Design</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Enhancers</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genomes</topic><topic>Glial cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Insects</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neuroglia - metabolism</topic><topic>Nucleotides</topic><topic>Repressor Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synthetic Biology</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taskiran, Ibrahim I.</creatorcontrib><creatorcontrib>Spanier, Katina I.</creatorcontrib><creatorcontrib>Dickmänken, Hannah</creatorcontrib><creatorcontrib>Kempynck, Niklas</creatorcontrib><creatorcontrib>Pančíková, Alexandra</creatorcontrib><creatorcontrib>Ekşi, Eren Can</creatorcontrib><creatorcontrib>Hulselmans, Gert</creatorcontrib><creatorcontrib>Ismail, Joy N.</creatorcontrib><creatorcontrib>Theunis, Koen</creatorcontrib><creatorcontrib>Vandepoel, Roel</creatorcontrib><creatorcontrib>Christiaens, Valerie</creatorcontrib><creatorcontrib>Mauduit, David</creatorcontrib><creatorcontrib>Aerts, Stein</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taskiran, Ibrahim I.</au><au>Spanier, Katina I.</au><au>Dickmänken, Hannah</au><au>Kempynck, Niklas</au><au>Pančíková, Alexandra</au><au>Ekşi, Eren Can</au><au>Hulselmans, Gert</au><au>Ismail, Joy N.</au><au>Theunis, Koen</au><au>Vandepoel, Roel</au><au>Christiaens, Valerie</au><au>Mauduit, David</au><au>Aerts, Stein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell-type-directed design of synthetic enhancers</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>626</volume><issue>7997</issue><spage>212</spage><epage>220</epage><pages>212-220</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes 1 . It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models 2 – 6 , can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create ‘dual-code’ enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of Drosophila enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states. Deep learning models were used to design synthetic cell-type-specific enhancers that work in fruit fly brains and human cell lines, an approach that also provides insights into these gene regulatory elements.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38086419</pmid><doi>10.1038/s41586-023-06936-2</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0699-6676</orcidid><orcidid>https://orcid.org/0000-0002-0693-132X</orcidid><orcidid>https://orcid.org/0000-0002-8006-0315</orcidid><orcidid>https://orcid.org/0000-0002-0104-4844</orcidid><orcidid>https://orcid.org/0000-0002-3122-9858</orcidid><orcidid>https://orcid.org/0000-0002-1375-4157</orcidid><orcidid>https://orcid.org/0000-0002-2045-227X</orcidid><orcidid>https://orcid.org/0000-0002-5077-5264</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-02, Vol.626 (7997), p.212-220
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830415
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 14/1
14/19
14/35
38/15
42/109
631/114/1305
631/208/200
631/553/552
631/61/212
64/24
Animals
Animals, Genetically Modified - genetics
Binding sites
Brain
Brain - cytology
Cells - classification
Cells - metabolism
Deep Learning
Design
Drosophila melanogaster - cytology
Drosophila melanogaster - genetics
Enhancer Elements, Genetic - genetics
Enhancers
Gene expression
Gene Expression Regulation
Genomes
Glial cells
Humanities and Social Sciences
Humans
Insects
multidisciplinary
Mutation
Neuroglia - metabolism
Nucleotides
Repressor Proteins - metabolism
Science
Science (multidisciplinary)
Synthetic Biology
Transcription factors
Transcription Factors - metabolism
Transgenic animals
title Cell-type-directed design of synthetic enhancers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell-type-directed%20design%20of%20synthetic%20enhancers&rft.jtitle=Nature%20(London)&rft.au=Taskiran,%20Ibrahim%20I.&rft.date=2024-02-01&rft.volume=626&rft.issue=7997&rft.spage=212&rft.epage=220&rft.pages=212-220&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06936-2&rft_dat=%3Cproquest_pubme%3E2923071554%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923071554&rft_id=info:pmid/38086419&rfr_iscdi=true