Cell-type-directed design of synthetic enhancers
Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes 1 . It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatio...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-02, Vol.626 (7997), p.212-220 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 220 |
---|---|
container_issue | 7997 |
container_start_page | 212 |
container_title | Nature (London) |
container_volume | 626 |
creator | Taskiran, Ibrahim I. Spanier, Katina I. Dickmänken, Hannah Kempynck, Niklas Pančíková, Alexandra Ekşi, Eren Can Hulselmans, Gert Ismail, Joy N. Theunis, Koen Vandepoel, Roel Christiaens, Valerie Mauduit, David Aerts, Stein |
description | Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes
1
. It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models
2
–
6
, can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create ‘dual-code’ enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of
Drosophila
enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states.
Deep learning models were used to design synthetic cell-type-specific enhancers that work in fruit fly brains and human cell lines, an approach that also provides insights into these gene regulatory elements. |
doi_str_mv | 10.1038/s41586-023-06936-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923071554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f76e329fc1b9a04c6c3c2f4055865ca677ac4db8940715116126aebe3fc9e1b53</originalsourceid><addsrcrecordid>eNp9kTlPAzEQhS0EgnD8AQoUiYbGML53K4QiLgmJBmrL651NNkq8wd4g5d9jSDgLKhfzzfN78wg5ZnDOQBQXSTJVaApcUNCl0JRvkQGTRlOpC7NNBgC8oFAIvUf2U5oCgGJG7pI9UUChJSsHBEY4m9F-tUBatxF9j_WwxtSOw7BrhmkV-gn2rR9imLjgMaZDstO4WcKjzXtAnm-un0Z39OHx9n509UC9NKqnjdEoeNl4VpUOpNdeeN5IUNmx8k4b47ysq6KUYJhiTDOuHVYoGl8iq5Q4IJdr3cWymmPtMfTRzewitnMXV7Zzrf09Ce3EjrtXy3JgyJfJCmcbhdi9LDH1dt4mn-O6gN0yWV4CL5XWhmX09A867ZYx5HyZ4uLdopKZ4mvKxy6liM2XGwb2vRG7bsTmRuxHI5bnpZOfOb5WPivIgFgDKY_CGOP33__IvgElT5YE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923071554</pqid></control><display><type>article</type><title>Cell-type-directed design of synthetic enhancers</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Taskiran, Ibrahim I. ; Spanier, Katina I. ; Dickmänken, Hannah ; Kempynck, Niklas ; Pančíková, Alexandra ; Ekşi, Eren Can ; Hulselmans, Gert ; Ismail, Joy N. ; Theunis, Koen ; Vandepoel, Roel ; Christiaens, Valerie ; Mauduit, David ; Aerts, Stein</creator><creatorcontrib>Taskiran, Ibrahim I. ; Spanier, Katina I. ; Dickmänken, Hannah ; Kempynck, Niklas ; Pančíková, Alexandra ; Ekşi, Eren Can ; Hulselmans, Gert ; Ismail, Joy N. ; Theunis, Koen ; Vandepoel, Roel ; Christiaens, Valerie ; Mauduit, David ; Aerts, Stein</creatorcontrib><description>Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes
1
. It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models
2
–
6
, can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create ‘dual-code’ enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of
Drosophila
enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states.
Deep learning models were used to design synthetic cell-type-specific enhancers that work in fruit fly brains and human cell lines, an approach that also provides insights into these gene regulatory elements.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06936-2</identifier><identifier>PMID: 38086419</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/1 ; 14/19 ; 14/35 ; 38/15 ; 42/109 ; 631/114/1305 ; 631/208/200 ; 631/553/552 ; 631/61/212 ; 64/24 ; Animals ; Animals, Genetically Modified - genetics ; Binding sites ; Brain ; Brain - cytology ; Cells - classification ; Cells - metabolism ; Deep Learning ; Design ; Drosophila melanogaster - cytology ; Drosophila melanogaster - genetics ; Enhancer Elements, Genetic - genetics ; Enhancers ; Gene expression ; Gene Expression Regulation ; Genomes ; Glial cells ; Humanities and Social Sciences ; Humans ; Insects ; multidisciplinary ; Mutation ; Neuroglia - metabolism ; Nucleotides ; Repressor Proteins - metabolism ; Science ; Science (multidisciplinary) ; Synthetic Biology ; Transcription factors ; Transcription Factors - metabolism ; Transgenic animals</subject><ispartof>Nature (London), 2024-02, Vol.626 (7997), p.212-220</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Nature Publishing Group Feb 1, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f76e329fc1b9a04c6c3c2f4055865ca677ac4db8940715116126aebe3fc9e1b53</citedby><cites>FETCH-LOGICAL-c475t-f76e329fc1b9a04c6c3c2f4055865ca677ac4db8940715116126aebe3fc9e1b53</cites><orcidid>0000-0002-0699-6676 ; 0000-0002-0693-132X ; 0000-0002-8006-0315 ; 0000-0002-0104-4844 ; 0000-0002-3122-9858 ; 0000-0002-1375-4157 ; 0000-0002-2045-227X ; 0000-0002-5077-5264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-023-06936-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-023-06936-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38086419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taskiran, Ibrahim I.</creatorcontrib><creatorcontrib>Spanier, Katina I.</creatorcontrib><creatorcontrib>Dickmänken, Hannah</creatorcontrib><creatorcontrib>Kempynck, Niklas</creatorcontrib><creatorcontrib>Pančíková, Alexandra</creatorcontrib><creatorcontrib>Ekşi, Eren Can</creatorcontrib><creatorcontrib>Hulselmans, Gert</creatorcontrib><creatorcontrib>Ismail, Joy N.</creatorcontrib><creatorcontrib>Theunis, Koen</creatorcontrib><creatorcontrib>Vandepoel, Roel</creatorcontrib><creatorcontrib>Christiaens, Valerie</creatorcontrib><creatorcontrib>Mauduit, David</creatorcontrib><creatorcontrib>Aerts, Stein</creatorcontrib><title>Cell-type-directed design of synthetic enhancers</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes
1
. It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models
2
–
6
, can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create ‘dual-code’ enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of
Drosophila
enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states.
Deep learning models were used to design synthetic cell-type-specific enhancers that work in fruit fly brains and human cell lines, an approach that also provides insights into these gene regulatory elements.</description><subject>14/1</subject><subject>14/19</subject><subject>14/35</subject><subject>38/15</subject><subject>42/109</subject><subject>631/114/1305</subject><subject>631/208/200</subject><subject>631/553/552</subject><subject>631/61/212</subject><subject>64/24</subject><subject>Animals</subject><subject>Animals, Genetically Modified - genetics</subject><subject>Binding sites</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Cells - classification</subject><subject>Cells - metabolism</subject><subject>Deep Learning</subject><subject>Design</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Enhancers</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genomes</subject><subject>Glial cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Insects</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neuroglia - metabolism</subject><subject>Nucleotides</subject><subject>Repressor Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synthetic Biology</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Transgenic animals</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kTlPAzEQhS0EgnD8AQoUiYbGML53K4QiLgmJBmrL651NNkq8wd4g5d9jSDgLKhfzzfN78wg5ZnDOQBQXSTJVaApcUNCl0JRvkQGTRlOpC7NNBgC8oFAIvUf2U5oCgGJG7pI9UUChJSsHBEY4m9F-tUBatxF9j_WwxtSOw7BrhmkV-gn2rR9imLjgMaZDstO4WcKjzXtAnm-un0Z39OHx9n509UC9NKqnjdEoeNl4VpUOpNdeeN5IUNmx8k4b47ysq6KUYJhiTDOuHVYoGl8iq5Q4IJdr3cWymmPtMfTRzewitnMXV7Zzrf09Ce3EjrtXy3JgyJfJCmcbhdi9LDH1dt4mn-O6gN0yWV4CL5XWhmX09A867ZYx5HyZ4uLdopKZ4mvKxy6liM2XGwb2vRG7bsTmRuxHI5bnpZOfOb5WPivIgFgDKY_CGOP33__IvgElT5YE</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Taskiran, Ibrahim I.</creator><creator>Spanier, Katina I.</creator><creator>Dickmänken, Hannah</creator><creator>Kempynck, Niklas</creator><creator>Pančíková, Alexandra</creator><creator>Ekşi, Eren Can</creator><creator>Hulselmans, Gert</creator><creator>Ismail, Joy N.</creator><creator>Theunis, Koen</creator><creator>Vandepoel, Roel</creator><creator>Christiaens, Valerie</creator><creator>Mauduit, David</creator><creator>Aerts, Stein</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0699-6676</orcidid><orcidid>https://orcid.org/0000-0002-0693-132X</orcidid><orcidid>https://orcid.org/0000-0002-8006-0315</orcidid><orcidid>https://orcid.org/0000-0002-0104-4844</orcidid><orcidid>https://orcid.org/0000-0002-3122-9858</orcidid><orcidid>https://orcid.org/0000-0002-1375-4157</orcidid><orcidid>https://orcid.org/0000-0002-2045-227X</orcidid><orcidid>https://orcid.org/0000-0002-5077-5264</orcidid></search><sort><creationdate>20240201</creationdate><title>Cell-type-directed design of synthetic enhancers</title><author>Taskiran, Ibrahim I. ; Spanier, Katina I. ; Dickmänken, Hannah ; Kempynck, Niklas ; Pančíková, Alexandra ; Ekşi, Eren Can ; Hulselmans, Gert ; Ismail, Joy N. ; Theunis, Koen ; Vandepoel, Roel ; Christiaens, Valerie ; Mauduit, David ; Aerts, Stein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f76e329fc1b9a04c6c3c2f4055865ca677ac4db8940715116126aebe3fc9e1b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14/1</topic><topic>14/19</topic><topic>14/35</topic><topic>38/15</topic><topic>42/109</topic><topic>631/114/1305</topic><topic>631/208/200</topic><topic>631/553/552</topic><topic>631/61/212</topic><topic>64/24</topic><topic>Animals</topic><topic>Animals, Genetically Modified - genetics</topic><topic>Binding sites</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Cells - classification</topic><topic>Cells - metabolism</topic><topic>Deep Learning</topic><topic>Design</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Enhancers</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genomes</topic><topic>Glial cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Insects</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neuroglia - metabolism</topic><topic>Nucleotides</topic><topic>Repressor Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synthetic Biology</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taskiran, Ibrahim I.</creatorcontrib><creatorcontrib>Spanier, Katina I.</creatorcontrib><creatorcontrib>Dickmänken, Hannah</creatorcontrib><creatorcontrib>Kempynck, Niklas</creatorcontrib><creatorcontrib>Pančíková, Alexandra</creatorcontrib><creatorcontrib>Ekşi, Eren Can</creatorcontrib><creatorcontrib>Hulselmans, Gert</creatorcontrib><creatorcontrib>Ismail, Joy N.</creatorcontrib><creatorcontrib>Theunis, Koen</creatorcontrib><creatorcontrib>Vandepoel, Roel</creatorcontrib><creatorcontrib>Christiaens, Valerie</creatorcontrib><creatorcontrib>Mauduit, David</creatorcontrib><creatorcontrib>Aerts, Stein</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taskiran, Ibrahim I.</au><au>Spanier, Katina I.</au><au>Dickmänken, Hannah</au><au>Kempynck, Niklas</au><au>Pančíková, Alexandra</au><au>Ekşi, Eren Can</au><au>Hulselmans, Gert</au><au>Ismail, Joy N.</au><au>Theunis, Koen</au><au>Vandepoel, Roel</au><au>Christiaens, Valerie</au><au>Mauduit, David</au><au>Aerts, Stein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell-type-directed design of synthetic enhancers</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>626</volume><issue>7997</issue><spage>212</spage><epage>220</epage><pages>212-220</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes
1
. It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models
2
–
6
, can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create ‘dual-code’ enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of
Drosophila
enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states.
Deep learning models were used to design synthetic cell-type-specific enhancers that work in fruit fly brains and human cell lines, an approach that also provides insights into these gene regulatory elements.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38086419</pmid><doi>10.1038/s41586-023-06936-2</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0699-6676</orcidid><orcidid>https://orcid.org/0000-0002-0693-132X</orcidid><orcidid>https://orcid.org/0000-0002-8006-0315</orcidid><orcidid>https://orcid.org/0000-0002-0104-4844</orcidid><orcidid>https://orcid.org/0000-0002-3122-9858</orcidid><orcidid>https://orcid.org/0000-0002-1375-4157</orcidid><orcidid>https://orcid.org/0000-0002-2045-227X</orcidid><orcidid>https://orcid.org/0000-0002-5077-5264</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-02, Vol.626 (7997), p.212-220 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830415 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 14/1 14/19 14/35 38/15 42/109 631/114/1305 631/208/200 631/553/552 631/61/212 64/24 Animals Animals, Genetically Modified - genetics Binding sites Brain Brain - cytology Cells - classification Cells - metabolism Deep Learning Design Drosophila melanogaster - cytology Drosophila melanogaster - genetics Enhancer Elements, Genetic - genetics Enhancers Gene expression Gene Expression Regulation Genomes Glial cells Humanities and Social Sciences Humans Insects multidisciplinary Mutation Neuroglia - metabolism Nucleotides Repressor Proteins - metabolism Science Science (multidisciplinary) Synthetic Biology Transcription factors Transcription Factors - metabolism Transgenic animals |
title | Cell-type-directed design of synthetic enhancers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell-type-directed%20design%20of%20synthetic%20enhancers&rft.jtitle=Nature%20(London)&rft.au=Taskiran,%20Ibrahim%20I.&rft.date=2024-02-01&rft.volume=626&rft.issue=7997&rft.spage=212&rft.epage=220&rft.pages=212-220&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06936-2&rft_dat=%3Cproquest_pubme%3E2923071554%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923071554&rft_id=info:pmid/38086419&rfr_iscdi=true |