Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo

Enhancers control gene expression and have crucial roles in development and homeostasis 1 – 3 . However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-02, Vol.626 (7997), p.207-211
Hauptverfasser: de Almeida, Bernardo P., Schaub, Christoph, Pagani, Michaela, Secchia, Stefano, Furlong, Eileen E. M., Stark, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 7997
container_start_page 207
container_title Nature (London)
container_volume 626
creator de Almeida, Bernardo P.
Schaub, Christoph
Pagani, Michaela
Secchia, Stefano
Furlong, Eileen E. M.
Stark, Alexander
description Enhancers control gene expression and have crucial roles in development and homeostasis 1 – 3 . However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five tissues in the Drosophila melanogaster embryo: the central nervous system, epidermis, gut, muscle and brain. We first train convolutional neural networks using genome-wide single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then fine-tune the convolutional neural networks with smaller-scale data from in vivo enhancer activity assays, yielding models with 13% to 76% positive predictive value according to cross-validation. We designed and experimentally assessed 40 synthetic enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned in the target tissue (100% for central nervous system and muscle). The strategy of combining genome-wide and small-scale functional datasets by transfer learning is generally applicable and should enable the design of tissue-, cell type- and cell state-specific enhancers in any system. Deep learning and transfer learning were used to design tissue-specific enhancers in the Drosophila embryo that were active and specific, validating this approach to achieve tissue-, cell type- and cell state-specific expression control.
doi_str_mv 10.1038/s41586-023-06905-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923075189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-dd46eb6be415804e70b71bb82800760b8c745ce2bdf58217656408845c4806013</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EoqHwBzhUlrj0sjD2-mtPVdXyJVXiEs7W2jubuNrYwd5Uyr_HIaWlPXAayfPMO37nJeQ9g48MWvOpCCaNaoC3DagOZNO9IAsmtGqEMvolWQBw04Bp1Ql5U8otAEimxWty0howSjCzIMtln1c440AHLGEVaRpp2cd5jXPwFOO6jx5zoWPKtOCE_oDOoZQdFhoirSC9zqmk7TpMPcWNy_v0lrwa-6ngu_t6Sn5--by8-tbc_Pj6_erypvFCy7kZBqHQKYcHHyBQg9PMOcMNgFbgjNdCeuRuGKXhTCupBBhT34QBBaw9JRdH3e3ObXDwGOfcT3abw6bPe5v6YJ92YljbVbqzrB4FBONV4fxeIadf1dJsN6F4nKY-YtoVyzvgnVRKQ0U_PENv0y7H6q9SvAUtmekqxY-Ur0cpGceH3zCwh9TsMTVbU7N_UrOHobN_fTyM_I2pAu0RKLUVV5gfd_9H9jdQ9qKe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923075189</pqid></control><display><type>article</type><title>Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>de Almeida, Bernardo P. ; Schaub, Christoph ; Pagani, Michaela ; Secchia, Stefano ; Furlong, Eileen E. M. ; Stark, Alexander</creator><creatorcontrib>de Almeida, Bernardo P. ; Schaub, Christoph ; Pagani, Michaela ; Secchia, Stefano ; Furlong, Eileen E. M. ; Stark, Alexander</creatorcontrib><description>Enhancers control gene expression and have crucial roles in development and homeostasis 1 – 3 . However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five tissues in the Drosophila melanogaster embryo: the central nervous system, epidermis, gut, muscle and brain. We first train convolutional neural networks using genome-wide single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then fine-tune the convolutional neural networks with smaller-scale data from in vivo enhancer activity assays, yielding models with 13% to 76% positive predictive value according to cross-validation. We designed and experimentally assessed 40 synthetic enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned in the target tissue (100% for central nervous system and muscle). The strategy of combining genome-wide and small-scale functional datasets by transfer learning is generally applicable and should enable the design of tissue-, cell type- and cell state-specific enhancers in any system. Deep learning and transfer learning were used to design tissue-specific enhancers in the Drosophila embryo that were active and specific, validating this approach to achieve tissue-, cell type- and cell state-specific expression control.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06905-9</identifier><identifier>PMID: 38086418</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 38 ; 38/32 ; 45/23 ; 631/114/1305 ; 631/208/200 ; 64 ; 64/24 ; Animals ; Artificial neural networks ; Central nervous system ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Datasets ; Datasets as Topic ; Deep Learning ; Design ; Drosophila melanogaster - embryology ; Drosophila melanogaster - genetics ; Embryo, Nonmammalian - embryology ; Embryo, Nonmammalian - metabolism ; Embryos ; Enhancer Elements, Genetic - genetics ; Enhancers ; Epidermis ; Exocrine glands ; Fruit flies ; Gene expression ; Genomes ; Humanities and Social Sciences ; Insects ; multidisciplinary ; Muscles ; Nervous system ; Neural networks ; Neural Networks, Computer ; Organ Specificity - genetics ; Reproducibility of Results ; Science ; Science (multidisciplinary) ; Single-Cell Analysis ; Synthetic Biology - methods ; Tissues ; Transfer learning ; Transposase ; Transposases - metabolism</subject><ispartof>Nature (London), 2024-02, Vol.626 (7997), p.207-211</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Nature Publishing Group Feb 1, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-dd46eb6be415804e70b71bb82800760b8c745ce2bdf58217656408845c4806013</citedby><cites>FETCH-LOGICAL-c475t-dd46eb6be415804e70b71bb82800760b8c745ce2bdf58217656408845c4806013</cites><orcidid>0000-0003-2611-0841 ; 0000-0003-3714-0050 ; 0000-0002-9544-8339 ; 0000-0003-1000-8543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38086418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Almeida, Bernardo P.</creatorcontrib><creatorcontrib>Schaub, Christoph</creatorcontrib><creatorcontrib>Pagani, Michaela</creatorcontrib><creatorcontrib>Secchia, Stefano</creatorcontrib><creatorcontrib>Furlong, Eileen E. M.</creatorcontrib><creatorcontrib>Stark, Alexander</creatorcontrib><title>Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Enhancers control gene expression and have crucial roles in development and homeostasis 1 – 3 . However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five tissues in the Drosophila melanogaster embryo: the central nervous system, epidermis, gut, muscle and brain. We first train convolutional neural networks using genome-wide single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then fine-tune the convolutional neural networks with smaller-scale data from in vivo enhancer activity assays, yielding models with 13% to 76% positive predictive value according to cross-validation. We designed and experimentally assessed 40 synthetic enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned in the target tissue (100% for central nervous system and muscle). The strategy of combining genome-wide and small-scale functional datasets by transfer learning is generally applicable and should enable the design of tissue-, cell type- and cell state-specific enhancers in any system. Deep learning and transfer learning were used to design tissue-specific enhancers in the Drosophila embryo that were active and specific, validating this approach to achieve tissue-, cell type- and cell state-specific expression control.</description><subject>14</subject><subject>38</subject><subject>38/32</subject><subject>45/23</subject><subject>631/114/1305</subject><subject>631/208/200</subject><subject>64</subject><subject>64/24</subject><subject>Animals</subject><subject>Artificial neural networks</subject><subject>Central nervous system</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Datasets</subject><subject>Datasets as Topic</subject><subject>Deep Learning</subject><subject>Design</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Embryo, Nonmammalian - embryology</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Embryos</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Enhancers</subject><subject>Epidermis</subject><subject>Exocrine glands</subject><subject>Fruit flies</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Insects</subject><subject>multidisciplinary</subject><subject>Muscles</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Organ Specificity - genetics</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Single-Cell Analysis</subject><subject>Synthetic Biology - methods</subject><subject>Tissues</subject><subject>Transfer learning</subject><subject>Transposase</subject><subject>Transposases - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU1vEzEQhi0EoqHwBzhUlrj0sjD2-mtPVdXyJVXiEs7W2jubuNrYwd5Uyr_HIaWlPXAayfPMO37nJeQ9g48MWvOpCCaNaoC3DagOZNO9IAsmtGqEMvolWQBw04Bp1Ql5U8otAEimxWty0howSjCzIMtln1c440AHLGEVaRpp2cd5jXPwFOO6jx5zoWPKtOCE_oDOoZQdFhoirSC9zqmk7TpMPcWNy_v0lrwa-6ngu_t6Sn5--by8-tbc_Pj6_erypvFCy7kZBqHQKYcHHyBQg9PMOcMNgFbgjNdCeuRuGKXhTCupBBhT34QBBaw9JRdH3e3ObXDwGOfcT3abw6bPe5v6YJ92YljbVbqzrB4FBONV4fxeIadf1dJsN6F4nKY-YtoVyzvgnVRKQ0U_PENv0y7H6q9SvAUtmekqxY-Ur0cpGceH3zCwh9TsMTVbU7N_UrOHobN_fTyM_I2pAu0RKLUVV5gfd_9H9jdQ9qKe</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>de Almeida, Bernardo P.</creator><creator>Schaub, Christoph</creator><creator>Pagani, Michaela</creator><creator>Secchia, Stefano</creator><creator>Furlong, Eileen E. M.</creator><creator>Stark, Alexander</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2611-0841</orcidid><orcidid>https://orcid.org/0000-0003-3714-0050</orcidid><orcidid>https://orcid.org/0000-0002-9544-8339</orcidid><orcidid>https://orcid.org/0000-0003-1000-8543</orcidid></search><sort><creationdate>20240201</creationdate><title>Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo</title><author>de Almeida, Bernardo P. ; Schaub, Christoph ; Pagani, Michaela ; Secchia, Stefano ; Furlong, Eileen E. M. ; Stark, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-dd46eb6be415804e70b71bb82800760b8c745ce2bdf58217656408845c4806013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14</topic><topic>38</topic><topic>38/32</topic><topic>45/23</topic><topic>631/114/1305</topic><topic>631/208/200</topic><topic>64</topic><topic>64/24</topic><topic>Animals</topic><topic>Artificial neural networks</topic><topic>Central nervous system</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Datasets</topic><topic>Datasets as Topic</topic><topic>Deep Learning</topic><topic>Design</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Embryo, Nonmammalian - embryology</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Embryos</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Enhancers</topic><topic>Epidermis</topic><topic>Exocrine glands</topic><topic>Fruit flies</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Insects</topic><topic>multidisciplinary</topic><topic>Muscles</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Organ Specificity - genetics</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Single-Cell Analysis</topic><topic>Synthetic Biology - methods</topic><topic>Tissues</topic><topic>Transfer learning</topic><topic>Transposase</topic><topic>Transposases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Almeida, Bernardo P.</creatorcontrib><creatorcontrib>Schaub, Christoph</creatorcontrib><creatorcontrib>Pagani, Michaela</creatorcontrib><creatorcontrib>Secchia, Stefano</creatorcontrib><creatorcontrib>Furlong, Eileen E. M.</creatorcontrib><creatorcontrib>Stark, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Almeida, Bernardo P.</au><au>Schaub, Christoph</au><au>Pagani, Michaela</au><au>Secchia, Stefano</au><au>Furlong, Eileen E. M.</au><au>Stark, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>626</volume><issue>7997</issue><spage>207</spage><epage>211</epage><pages>207-211</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Enhancers control gene expression and have crucial roles in development and homeostasis 1 – 3 . However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five tissues in the Drosophila melanogaster embryo: the central nervous system, epidermis, gut, muscle and brain. We first train convolutional neural networks using genome-wide single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then fine-tune the convolutional neural networks with smaller-scale data from in vivo enhancer activity assays, yielding models with 13% to 76% positive predictive value according to cross-validation. We designed and experimentally assessed 40 synthetic enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned in the target tissue (100% for central nervous system and muscle). The strategy of combining genome-wide and small-scale functional datasets by transfer learning is generally applicable and should enable the design of tissue-, cell type- and cell state-specific enhancers in any system. Deep learning and transfer learning were used to design tissue-specific enhancers in the Drosophila embryo that were active and specific, validating this approach to achieve tissue-, cell type- and cell state-specific expression control.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38086418</pmid><doi>10.1038/s41586-023-06905-9</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2611-0841</orcidid><orcidid>https://orcid.org/0000-0003-3714-0050</orcidid><orcidid>https://orcid.org/0000-0002-9544-8339</orcidid><orcidid>https://orcid.org/0000-0003-1000-8543</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-02, Vol.626 (7997), p.207-211
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830412
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 14
38
38/32
45/23
631/114/1305
631/208/200
64
64/24
Animals
Artificial neural networks
Central nervous system
Chromatin
Chromatin - genetics
Chromatin - metabolism
Datasets
Datasets as Topic
Deep Learning
Design
Drosophila melanogaster - embryology
Drosophila melanogaster - genetics
Embryo, Nonmammalian - embryology
Embryo, Nonmammalian - metabolism
Embryos
Enhancer Elements, Genetic - genetics
Enhancers
Epidermis
Exocrine glands
Fruit flies
Gene expression
Genomes
Humanities and Social Sciences
Insects
multidisciplinary
Muscles
Nervous system
Neural networks
Neural Networks, Computer
Organ Specificity - genetics
Reproducibility of Results
Science
Science (multidisciplinary)
Single-Cell Analysis
Synthetic Biology - methods
Tissues
Transfer learning
Transposase
Transposases - metabolism
title Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20design%20of%20synthetic%20enhancers%20for%20selected%20tissues%20in%20the%20Drosophila%20embryo&rft.jtitle=Nature%20(London)&rft.au=de%20Almeida,%20Bernardo%20P.&rft.date=2024-02-01&rft.volume=626&rft.issue=7997&rft.spage=207&rft.epage=211&rft.pages=207-211&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06905-9&rft_dat=%3Cproquest_pubme%3E2923075189%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923075189&rft_id=info:pmid/38086418&rfr_iscdi=true