Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo
Enhancers control gene expression and have crucial roles in development and homeostasis 1 – 3 . However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-02, Vol.626 (7997), p.207-211 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | 7997 |
container_start_page | 207 |
container_title | Nature (London) |
container_volume | 626 |
creator | de Almeida, Bernardo P. Schaub, Christoph Pagani, Michaela Secchia, Stefano Furlong, Eileen E. M. Stark, Alexander |
description | Enhancers control gene expression and have crucial roles in development and homeostasis
1
–
3
. However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five tissues in the
Drosophila melanogaster
embryo: the central nervous system, epidermis, gut, muscle and brain. We first train convolutional neural networks using genome-wide single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then fine-tune the convolutional neural networks with smaller-scale data from in vivo enhancer activity assays, yielding models with 13% to 76% positive predictive value according to cross-validation. We designed and experimentally assessed 40 synthetic enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned in the target tissue (100% for central nervous system and muscle). The strategy of combining genome-wide and small-scale functional datasets by transfer learning is generally applicable and should enable the design of tissue-, cell type- and cell state-specific enhancers in any system.
Deep learning and transfer learning were used to design tissue-specific enhancers in the
Drosophila
embryo that were active and specific, validating this approach to achieve tissue-, cell type- and cell state-specific expression control. |
doi_str_mv | 10.1038/s41586-023-06905-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923075189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-dd46eb6be415804e70b71bb82800760b8c745ce2bdf58217656408845c4806013</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EoqHwBzhUlrj0sjD2-mtPVdXyJVXiEs7W2jubuNrYwd5Uyr_HIaWlPXAayfPMO37nJeQ9g48MWvOpCCaNaoC3DagOZNO9IAsmtGqEMvolWQBw04Bp1Ql5U8otAEimxWty0howSjCzIMtln1c440AHLGEVaRpp2cd5jXPwFOO6jx5zoWPKtOCE_oDOoZQdFhoirSC9zqmk7TpMPcWNy_v0lrwa-6ngu_t6Sn5--by8-tbc_Pj6_erypvFCy7kZBqHQKYcHHyBQg9PMOcMNgFbgjNdCeuRuGKXhTCupBBhT34QBBaw9JRdH3e3ObXDwGOfcT3abw6bPe5v6YJ92YljbVbqzrB4FBONV4fxeIadf1dJsN6F4nKY-YtoVyzvgnVRKQ0U_PENv0y7H6q9SvAUtmekqxY-Ur0cpGceH3zCwh9TsMTVbU7N_UrOHobN_fTyM_I2pAu0RKLUVV5gfd_9H9jdQ9qKe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923075189</pqid></control><display><type>article</type><title>Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>de Almeida, Bernardo P. ; Schaub, Christoph ; Pagani, Michaela ; Secchia, Stefano ; Furlong, Eileen E. M. ; Stark, Alexander</creator><creatorcontrib>de Almeida, Bernardo P. ; Schaub, Christoph ; Pagani, Michaela ; Secchia, Stefano ; Furlong, Eileen E. M. ; Stark, Alexander</creatorcontrib><description>Enhancers control gene expression and have crucial roles in development and homeostasis
1
–
3
. However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five tissues in the
Drosophila melanogaster
embryo: the central nervous system, epidermis, gut, muscle and brain. We first train convolutional neural networks using genome-wide single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then fine-tune the convolutional neural networks with smaller-scale data from in vivo enhancer activity assays, yielding models with 13% to 76% positive predictive value according to cross-validation. We designed and experimentally assessed 40 synthetic enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned in the target tissue (100% for central nervous system and muscle). The strategy of combining genome-wide and small-scale functional datasets by transfer learning is generally applicable and should enable the design of tissue-, cell type- and cell state-specific enhancers in any system.
Deep learning and transfer learning were used to design tissue-specific enhancers in the
Drosophila
embryo that were active and specific, validating this approach to achieve tissue-, cell type- and cell state-specific expression control.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06905-9</identifier><identifier>PMID: 38086418</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 38 ; 38/32 ; 45/23 ; 631/114/1305 ; 631/208/200 ; 64 ; 64/24 ; Animals ; Artificial neural networks ; Central nervous system ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Datasets ; Datasets as Topic ; Deep Learning ; Design ; Drosophila melanogaster - embryology ; Drosophila melanogaster - genetics ; Embryo, Nonmammalian - embryology ; Embryo, Nonmammalian - metabolism ; Embryos ; Enhancer Elements, Genetic - genetics ; Enhancers ; Epidermis ; Exocrine glands ; Fruit flies ; Gene expression ; Genomes ; Humanities and Social Sciences ; Insects ; multidisciplinary ; Muscles ; Nervous system ; Neural networks ; Neural Networks, Computer ; Organ Specificity - genetics ; Reproducibility of Results ; Science ; Science (multidisciplinary) ; Single-Cell Analysis ; Synthetic Biology - methods ; Tissues ; Transfer learning ; Transposase ; Transposases - metabolism</subject><ispartof>Nature (London), 2024-02, Vol.626 (7997), p.207-211</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Nature Publishing Group Feb 1, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-dd46eb6be415804e70b71bb82800760b8c745ce2bdf58217656408845c4806013</citedby><cites>FETCH-LOGICAL-c475t-dd46eb6be415804e70b71bb82800760b8c745ce2bdf58217656408845c4806013</cites><orcidid>0000-0003-2611-0841 ; 0000-0003-3714-0050 ; 0000-0002-9544-8339 ; 0000-0003-1000-8543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38086418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Almeida, Bernardo P.</creatorcontrib><creatorcontrib>Schaub, Christoph</creatorcontrib><creatorcontrib>Pagani, Michaela</creatorcontrib><creatorcontrib>Secchia, Stefano</creatorcontrib><creatorcontrib>Furlong, Eileen E. M.</creatorcontrib><creatorcontrib>Stark, Alexander</creatorcontrib><title>Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Enhancers control gene expression and have crucial roles in development and homeostasis
1
–
3
. However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five tissues in the
Drosophila melanogaster
embryo: the central nervous system, epidermis, gut, muscle and brain. We first train convolutional neural networks using genome-wide single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then fine-tune the convolutional neural networks with smaller-scale data from in vivo enhancer activity assays, yielding models with 13% to 76% positive predictive value according to cross-validation. We designed and experimentally assessed 40 synthetic enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned in the target tissue (100% for central nervous system and muscle). The strategy of combining genome-wide and small-scale functional datasets by transfer learning is generally applicable and should enable the design of tissue-, cell type- and cell state-specific enhancers in any system.
Deep learning and transfer learning were used to design tissue-specific enhancers in the
Drosophila
embryo that were active and specific, validating this approach to achieve tissue-, cell type- and cell state-specific expression control.</description><subject>14</subject><subject>38</subject><subject>38/32</subject><subject>45/23</subject><subject>631/114/1305</subject><subject>631/208/200</subject><subject>64</subject><subject>64/24</subject><subject>Animals</subject><subject>Artificial neural networks</subject><subject>Central nervous system</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Datasets</subject><subject>Datasets as Topic</subject><subject>Deep Learning</subject><subject>Design</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Embryo, Nonmammalian - embryology</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Embryos</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Enhancers</subject><subject>Epidermis</subject><subject>Exocrine glands</subject><subject>Fruit flies</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Insects</subject><subject>multidisciplinary</subject><subject>Muscles</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Organ Specificity - genetics</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Single-Cell Analysis</subject><subject>Synthetic Biology - methods</subject><subject>Tissues</subject><subject>Transfer learning</subject><subject>Transposase</subject><subject>Transposases - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU1vEzEQhi0EoqHwBzhUlrj0sjD2-mtPVdXyJVXiEs7W2jubuNrYwd5Uyr_HIaWlPXAayfPMO37nJeQ9g48MWvOpCCaNaoC3DagOZNO9IAsmtGqEMvolWQBw04Bp1Ql5U8otAEimxWty0howSjCzIMtln1c440AHLGEVaRpp2cd5jXPwFOO6jx5zoWPKtOCE_oDOoZQdFhoirSC9zqmk7TpMPcWNy_v0lrwa-6ngu_t6Sn5--by8-tbc_Pj6_erypvFCy7kZBqHQKYcHHyBQg9PMOcMNgFbgjNdCeuRuGKXhTCupBBhT34QBBaw9JRdH3e3ObXDwGOfcT3abw6bPe5v6YJ92YljbVbqzrB4FBONV4fxeIadf1dJsN6F4nKY-YtoVyzvgnVRKQ0U_PENv0y7H6q9SvAUtmekqxY-Ur0cpGceH3zCwh9TsMTVbU7N_UrOHobN_fTyM_I2pAu0RKLUVV5gfd_9H9jdQ9qKe</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>de Almeida, Bernardo P.</creator><creator>Schaub, Christoph</creator><creator>Pagani, Michaela</creator><creator>Secchia, Stefano</creator><creator>Furlong, Eileen E. M.</creator><creator>Stark, Alexander</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2611-0841</orcidid><orcidid>https://orcid.org/0000-0003-3714-0050</orcidid><orcidid>https://orcid.org/0000-0002-9544-8339</orcidid><orcidid>https://orcid.org/0000-0003-1000-8543</orcidid></search><sort><creationdate>20240201</creationdate><title>Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo</title><author>de Almeida, Bernardo P. ; Schaub, Christoph ; Pagani, Michaela ; Secchia, Stefano ; Furlong, Eileen E. M. ; Stark, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-dd46eb6be415804e70b71bb82800760b8c745ce2bdf58217656408845c4806013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14</topic><topic>38</topic><topic>38/32</topic><topic>45/23</topic><topic>631/114/1305</topic><topic>631/208/200</topic><topic>64</topic><topic>64/24</topic><topic>Animals</topic><topic>Artificial neural networks</topic><topic>Central nervous system</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Datasets</topic><topic>Datasets as Topic</topic><topic>Deep Learning</topic><topic>Design</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Embryo, Nonmammalian - embryology</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Embryos</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Enhancers</topic><topic>Epidermis</topic><topic>Exocrine glands</topic><topic>Fruit flies</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Insects</topic><topic>multidisciplinary</topic><topic>Muscles</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Organ Specificity - genetics</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Single-Cell Analysis</topic><topic>Synthetic Biology - methods</topic><topic>Tissues</topic><topic>Transfer learning</topic><topic>Transposase</topic><topic>Transposases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Almeida, Bernardo P.</creatorcontrib><creatorcontrib>Schaub, Christoph</creatorcontrib><creatorcontrib>Pagani, Michaela</creatorcontrib><creatorcontrib>Secchia, Stefano</creatorcontrib><creatorcontrib>Furlong, Eileen E. M.</creatorcontrib><creatorcontrib>Stark, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Almeida, Bernardo P.</au><au>Schaub, Christoph</au><au>Pagani, Michaela</au><au>Secchia, Stefano</au><au>Furlong, Eileen E. M.</au><au>Stark, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>626</volume><issue>7997</issue><spage>207</spage><epage>211</epage><pages>207-211</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Enhancers control gene expression and have crucial roles in development and homeostasis
1
–
3
. However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five tissues in the
Drosophila melanogaster
embryo: the central nervous system, epidermis, gut, muscle and brain. We first train convolutional neural networks using genome-wide single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then fine-tune the convolutional neural networks with smaller-scale data from in vivo enhancer activity assays, yielding models with 13% to 76% positive predictive value according to cross-validation. We designed and experimentally assessed 40 synthetic enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned in the target tissue (100% for central nervous system and muscle). The strategy of combining genome-wide and small-scale functional datasets by transfer learning is generally applicable and should enable the design of tissue-, cell type- and cell state-specific enhancers in any system.
Deep learning and transfer learning were used to design tissue-specific enhancers in the
Drosophila
embryo that were active and specific, validating this approach to achieve tissue-, cell type- and cell state-specific expression control.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38086418</pmid><doi>10.1038/s41586-023-06905-9</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2611-0841</orcidid><orcidid>https://orcid.org/0000-0003-3714-0050</orcidid><orcidid>https://orcid.org/0000-0002-9544-8339</orcidid><orcidid>https://orcid.org/0000-0003-1000-8543</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-02, Vol.626 (7997), p.207-211 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830412 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 14 38 38/32 45/23 631/114/1305 631/208/200 64 64/24 Animals Artificial neural networks Central nervous system Chromatin Chromatin - genetics Chromatin - metabolism Datasets Datasets as Topic Deep Learning Design Drosophila melanogaster - embryology Drosophila melanogaster - genetics Embryo, Nonmammalian - embryology Embryo, Nonmammalian - metabolism Embryos Enhancer Elements, Genetic - genetics Enhancers Epidermis Exocrine glands Fruit flies Gene expression Genomes Humanities and Social Sciences Insects multidisciplinary Muscles Nervous system Neural networks Neural Networks, Computer Organ Specificity - genetics Reproducibility of Results Science Science (multidisciplinary) Single-Cell Analysis Synthetic Biology - methods Tissues Transfer learning Transposase Transposases - metabolism |
title | Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20design%20of%20synthetic%20enhancers%20for%20selected%20tissues%20in%20the%20Drosophila%20embryo&rft.jtitle=Nature%20(London)&rft.au=de%20Almeida,%20Bernardo%20P.&rft.date=2024-02-01&rft.volume=626&rft.issue=7997&rft.spage=207&rft.epage=211&rft.pages=207-211&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06905-9&rft_dat=%3Cproquest_pubme%3E2923075189%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923075189&rft_id=info:pmid/38086418&rfr_iscdi=true |