Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors

Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. However, only some patients respond to ICIs, and current biomarkers for ICI efficacy have limited performance. Here, we devised an interpretable machine learning (ML) model trained using patient-specific cell-cell communicatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2024-02, Vol.10 (5), p.eadj0785
Hauptverfasser: Lee, Juhun, Kim, Donghyo, Kong, JungHo, Ha, Doyeon, Kim, Inhae, Park, Minhyuk, Lee, Kwanghwan, Im, Sin-Hyeog, Kim, Sanguk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page eadj0785
container_title Science advances
container_volume 10
creator Lee, Juhun
Kim, Donghyo
Kong, JungHo
Ha, Doyeon
Kim, Inhae
Park, Minhyuk
Lee, Kwanghwan
Im, Sin-Hyeog
Kim, Sanguk
description Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. However, only some patients respond to ICIs, and current biomarkers for ICI efficacy have limited performance. Here, we devised an interpretable machine learning (ML) model trained using patient-specific cell-cell communication networks (CCNs) decoded from the patient's bulk tumor transcriptome. The model could (i) predict ICI efficacy for patients across four cancer types (median AUROC: 0.79) and (ii) identify key communication pathways with crucial players responsible for patient response or resistance to ICIs by analyzing more than 700 ICI-treated patient samples from 11 cohorts. The model prioritized chemotaxis communication of immune-related cells and growth factor communication of structural cells as the key biological processes underlying response and resistance to ICIs, respectively. We confirmed the key communication pathways and players at the single-cell level in patients with melanoma. Our network-based ML approach can be used to expand ICIs' clinical benefits in cancer patients.
doi_str_mv 10.1126/sciadv.adj0785
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921115054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-1f55ff7083c7b3c4e7b0c5aa65114c0500aaa9c8bdc1171a2e6e7861f0767d2a3</originalsourceid><addsrcrecordid>eNpVkUFv1DAQhaMK1FalV47IRy5ZPEkcJyeEVlCQKnGBszWZTLpuEzvY3iJ-AP-7Xu1Slct4pHn-3tivKN6C3ABU7YdIFsfHDY73UnfqrLisaq3KSjXdqxf9RXEd472UEpq2VdCfFxd1V_UKdH9Z_N3yPJeUiyC_LHtnCZP1TjhOv314KAeMPArrEoc1cMJhZrEg7axjMTMGZ92dyJPRUoqC0BEHsWYGuyQCx9W7yCJ5YQ90FrRjelh9Bmbozg42-RDfFK8nnCNfn86r4ueXzz-2X8vb7zfftp9uS6qbNpUwKTVNWnY16aGmhvUgSSHmV0FDUkmJiD11w0gAGrDilnXXwiR1q8cK66vi45G77oeFR8o7BpzNGuyC4Y_xaM3_E2d35s4_GsieEmSbCe9PhOB_7Tkms9h4-D507PfRVH0FAEqqJks3RykFH2Pg6dkHpDnkZ475mVN--cK7l9s9y_-lVT8BxoGdmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921115054</pqid></control><display><type>article</type><title>Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Lee, Juhun ; Kim, Donghyo ; Kong, JungHo ; Ha, Doyeon ; Kim, Inhae ; Park, Minhyuk ; Lee, Kwanghwan ; Im, Sin-Hyeog ; Kim, Sanguk</creator><creatorcontrib>Lee, Juhun ; Kim, Donghyo ; Kong, JungHo ; Ha, Doyeon ; Kim, Inhae ; Park, Minhyuk ; Lee, Kwanghwan ; Im, Sin-Hyeog ; Kim, Sanguk</creatorcontrib><description>Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. However, only some patients respond to ICIs, and current biomarkers for ICI efficacy have limited performance. Here, we devised an interpretable machine learning (ML) model trained using patient-specific cell-cell communication networks (CCNs) decoded from the patient's bulk tumor transcriptome. The model could (i) predict ICI efficacy for patients across four cancer types (median AUROC: 0.79) and (ii) identify key communication pathways with crucial players responsible for patient response or resistance to ICIs by analyzing more than 700 ICI-treated patient samples from 11 cohorts. The model prioritized chemotaxis communication of immune-related cells and growth factor communication of structural cells as the key biological processes underlying response and resistance to ICIs, respectively. We confirmed the key communication pathways and players at the single-cell level in patients with melanoma. Our network-based ML approach can be used to expand ICIs' clinical benefits in cancer patients.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adj0785</identifier><identifier>PMID: 38295179</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biomedicine and Life Sciences ; Cancer ; Cell Communication ; Chemotaxis ; Humans ; Immune Checkpoint Inhibitors - pharmacology ; Immune Checkpoint Inhibitors - therapeutic use ; Immunology ; Machine Learning ; Melanoma ; SciAdv r-articles</subject><ispartof>Science advances, 2024-02, Vol.10 (5), p.eadj0785</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-1f55ff7083c7b3c4e7b0c5aa65114c0500aaa9c8bdc1171a2e6e7861f0767d2a3</cites><orcidid>0000-0002-8097-3675 ; 0000-0002-3173-1856 ; 0000-0003-3466-2638 ; 0000-0002-3449-3814 ; 0000-0003-2749-8665 ; 0000-0002-3683-0378 ; 0000-0002-4134-3953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830106/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830106/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38295179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Juhun</creatorcontrib><creatorcontrib>Kim, Donghyo</creatorcontrib><creatorcontrib>Kong, JungHo</creatorcontrib><creatorcontrib>Ha, Doyeon</creatorcontrib><creatorcontrib>Kim, Inhae</creatorcontrib><creatorcontrib>Park, Minhyuk</creatorcontrib><creatorcontrib>Lee, Kwanghwan</creatorcontrib><creatorcontrib>Im, Sin-Hyeog</creatorcontrib><creatorcontrib>Kim, Sanguk</creatorcontrib><title>Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. However, only some patients respond to ICIs, and current biomarkers for ICI efficacy have limited performance. Here, we devised an interpretable machine learning (ML) model trained using patient-specific cell-cell communication networks (CCNs) decoded from the patient's bulk tumor transcriptome. The model could (i) predict ICI efficacy for patients across four cancer types (median AUROC: 0.79) and (ii) identify key communication pathways with crucial players responsible for patient response or resistance to ICIs by analyzing more than 700 ICI-treated patient samples from 11 cohorts. The model prioritized chemotaxis communication of immune-related cells and growth factor communication of structural cells as the key biological processes underlying response and resistance to ICIs, respectively. We confirmed the key communication pathways and players at the single-cell level in patients with melanoma. Our network-based ML approach can be used to expand ICIs' clinical benefits in cancer patients.</description><subject>Biomedicine and Life Sciences</subject><subject>Cancer</subject><subject>Cell Communication</subject><subject>Chemotaxis</subject><subject>Humans</subject><subject>Immune Checkpoint Inhibitors - pharmacology</subject><subject>Immune Checkpoint Inhibitors - therapeutic use</subject><subject>Immunology</subject><subject>Machine Learning</subject><subject>Melanoma</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFv1DAQhaMK1FalV47IRy5ZPEkcJyeEVlCQKnGBszWZTLpuEzvY3iJ-AP-7Xu1Slct4pHn-3tivKN6C3ABU7YdIFsfHDY73UnfqrLisaq3KSjXdqxf9RXEd472UEpq2VdCfFxd1V_UKdH9Z_N3yPJeUiyC_LHtnCZP1TjhOv314KAeMPArrEoc1cMJhZrEg7axjMTMGZ92dyJPRUoqC0BEHsWYGuyQCx9W7yCJ5YQ90FrRjelh9Bmbozg42-RDfFK8nnCNfn86r4ueXzz-2X8vb7zfftp9uS6qbNpUwKTVNWnY16aGmhvUgSSHmV0FDUkmJiD11w0gAGrDilnXXwiR1q8cK66vi45G77oeFR8o7BpzNGuyC4Y_xaM3_E2d35s4_GsieEmSbCe9PhOB_7Tkms9h4-D507PfRVH0FAEqqJks3RykFH2Pg6dkHpDnkZ475mVN--cK7l9s9y_-lVT8BxoGdmg</recordid><startdate>20240202</startdate><enddate>20240202</enddate><creator>Lee, Juhun</creator><creator>Kim, Donghyo</creator><creator>Kong, JungHo</creator><creator>Ha, Doyeon</creator><creator>Kim, Inhae</creator><creator>Park, Minhyuk</creator><creator>Lee, Kwanghwan</creator><creator>Im, Sin-Hyeog</creator><creator>Kim, Sanguk</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8097-3675</orcidid><orcidid>https://orcid.org/0000-0002-3173-1856</orcidid><orcidid>https://orcid.org/0000-0003-3466-2638</orcidid><orcidid>https://orcid.org/0000-0002-3449-3814</orcidid><orcidid>https://orcid.org/0000-0003-2749-8665</orcidid><orcidid>https://orcid.org/0000-0002-3683-0378</orcidid><orcidid>https://orcid.org/0000-0002-4134-3953</orcidid></search><sort><creationdate>20240202</creationdate><title>Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors</title><author>Lee, Juhun ; Kim, Donghyo ; Kong, JungHo ; Ha, Doyeon ; Kim, Inhae ; Park, Minhyuk ; Lee, Kwanghwan ; Im, Sin-Hyeog ; Kim, Sanguk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-1f55ff7083c7b3c4e7b0c5aa65114c0500aaa9c8bdc1171a2e6e7861f0767d2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedicine and Life Sciences</topic><topic>Cancer</topic><topic>Cell Communication</topic><topic>Chemotaxis</topic><topic>Humans</topic><topic>Immune Checkpoint Inhibitors - pharmacology</topic><topic>Immune Checkpoint Inhibitors - therapeutic use</topic><topic>Immunology</topic><topic>Machine Learning</topic><topic>Melanoma</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Juhun</creatorcontrib><creatorcontrib>Kim, Donghyo</creatorcontrib><creatorcontrib>Kong, JungHo</creatorcontrib><creatorcontrib>Ha, Doyeon</creatorcontrib><creatorcontrib>Kim, Inhae</creatorcontrib><creatorcontrib>Park, Minhyuk</creatorcontrib><creatorcontrib>Lee, Kwanghwan</creatorcontrib><creatorcontrib>Im, Sin-Hyeog</creatorcontrib><creatorcontrib>Kim, Sanguk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Juhun</au><au>Kim, Donghyo</au><au>Kong, JungHo</au><au>Ha, Doyeon</au><au>Kim, Inhae</au><au>Park, Minhyuk</au><au>Lee, Kwanghwan</au><au>Im, Sin-Hyeog</au><au>Kim, Sanguk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-02-02</date><risdate>2024</risdate><volume>10</volume><issue>5</issue><spage>eadj0785</spage><pages>eadj0785-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. However, only some patients respond to ICIs, and current biomarkers for ICI efficacy have limited performance. Here, we devised an interpretable machine learning (ML) model trained using patient-specific cell-cell communication networks (CCNs) decoded from the patient's bulk tumor transcriptome. The model could (i) predict ICI efficacy for patients across four cancer types (median AUROC: 0.79) and (ii) identify key communication pathways with crucial players responsible for patient response or resistance to ICIs by analyzing more than 700 ICI-treated patient samples from 11 cohorts. The model prioritized chemotaxis communication of immune-related cells and growth factor communication of structural cells as the key biological processes underlying response and resistance to ICIs, respectively. We confirmed the key communication pathways and players at the single-cell level in patients with melanoma. Our network-based ML approach can be used to expand ICIs' clinical benefits in cancer patients.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>38295179</pmid><doi>10.1126/sciadv.adj0785</doi><orcidid>https://orcid.org/0000-0002-8097-3675</orcidid><orcidid>https://orcid.org/0000-0002-3173-1856</orcidid><orcidid>https://orcid.org/0000-0003-3466-2638</orcidid><orcidid>https://orcid.org/0000-0002-3449-3814</orcidid><orcidid>https://orcid.org/0000-0003-2749-8665</orcidid><orcidid>https://orcid.org/0000-0002-3683-0378</orcidid><orcidid>https://orcid.org/0000-0002-4134-3953</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2024-02, Vol.10 (5), p.eadj0785
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830106
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library
subjects Biomedicine and Life Sciences
Cancer
Cell Communication
Chemotaxis
Humans
Immune Checkpoint Inhibitors - pharmacology
Immune Checkpoint Inhibitors - therapeutic use
Immunology
Machine Learning
Melanoma
SciAdv r-articles
title Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell-cell%20communication%20network-based%20interpretable%20machine%20learning%20predicts%20cancer%20patient%20response%20to%20immune%20checkpoint%20inhibitors&rft.jtitle=Science%20advances&rft.au=Lee,%20Juhun&rft.date=2024-02-02&rft.volume=10&rft.issue=5&rft.spage=eadj0785&rft.pages=eadj0785-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adj0785&rft_dat=%3Cproquest_pubme%3E2921115054%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921115054&rft_id=info:pmid/38295179&rfr_iscdi=true