Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. However, only some patients respond to ICIs, and current biomarkers for ICI efficacy have limited performance. Here, we devised an interpretable machine learning (ML) model trained using patient-specific cell-cell communicatio...
Gespeichert in:
Veröffentlicht in: | Science advances 2024-02, Vol.10 (5), p.eadj0785 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | eadj0785 |
container_title | Science advances |
container_volume | 10 |
creator | Lee, Juhun Kim, Donghyo Kong, JungHo Ha, Doyeon Kim, Inhae Park, Minhyuk Lee, Kwanghwan Im, Sin-Hyeog Kim, Sanguk |
description | Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. However, only some patients respond to ICIs, and current biomarkers for ICI efficacy have limited performance. Here, we devised an interpretable machine learning (ML) model trained using patient-specific cell-cell communication networks (CCNs) decoded from the patient's bulk tumor transcriptome. The model could (i) predict ICI efficacy for patients across four cancer types (median AUROC: 0.79) and (ii) identify key communication pathways with crucial players responsible for patient response or resistance to ICIs by analyzing more than 700 ICI-treated patient samples from 11 cohorts. The model prioritized chemotaxis communication of immune-related cells and growth factor communication of structural cells as the key biological processes underlying response and resistance to ICIs, respectively. We confirmed the key communication pathways and players at the single-cell level in patients with melanoma. Our network-based ML approach can be used to expand ICIs' clinical benefits in cancer patients. |
doi_str_mv | 10.1126/sciadv.adj0785 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921115054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-1f55ff7083c7b3c4e7b0c5aa65114c0500aaa9c8bdc1171a2e6e7861f0767d2a3</originalsourceid><addsrcrecordid>eNpVkUFv1DAQhaMK1FalV47IRy5ZPEkcJyeEVlCQKnGBszWZTLpuEzvY3iJ-AP-7Xu1Slct4pHn-3tivKN6C3ABU7YdIFsfHDY73UnfqrLisaq3KSjXdqxf9RXEd472UEpq2VdCfFxd1V_UKdH9Z_N3yPJeUiyC_LHtnCZP1TjhOv314KAeMPArrEoc1cMJhZrEg7axjMTMGZ92dyJPRUoqC0BEHsWYGuyQCx9W7yCJ5YQ90FrRjelh9Bmbozg42-RDfFK8nnCNfn86r4ueXzz-2X8vb7zfftp9uS6qbNpUwKTVNWnY16aGmhvUgSSHmV0FDUkmJiD11w0gAGrDilnXXwiR1q8cK66vi45G77oeFR8o7BpzNGuyC4Y_xaM3_E2d35s4_GsieEmSbCe9PhOB_7Tkms9h4-D507PfRVH0FAEqqJks3RykFH2Pg6dkHpDnkZ475mVN--cK7l9s9y_-lVT8BxoGdmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921115054</pqid></control><display><type>article</type><title>Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Lee, Juhun ; Kim, Donghyo ; Kong, JungHo ; Ha, Doyeon ; Kim, Inhae ; Park, Minhyuk ; Lee, Kwanghwan ; Im, Sin-Hyeog ; Kim, Sanguk</creator><creatorcontrib>Lee, Juhun ; Kim, Donghyo ; Kong, JungHo ; Ha, Doyeon ; Kim, Inhae ; Park, Minhyuk ; Lee, Kwanghwan ; Im, Sin-Hyeog ; Kim, Sanguk</creatorcontrib><description>Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. However, only some patients respond to ICIs, and current biomarkers for ICI efficacy have limited performance. Here, we devised an interpretable machine learning (ML) model trained using patient-specific cell-cell communication networks (CCNs) decoded from the patient's bulk tumor transcriptome. The model could (i) predict ICI efficacy for patients across four cancer types (median AUROC: 0.79) and (ii) identify key communication pathways with crucial players responsible for patient response or resistance to ICIs by analyzing more than 700 ICI-treated patient samples from 11 cohorts. The model prioritized chemotaxis communication of immune-related cells and growth factor communication of structural cells as the key biological processes underlying response and resistance to ICIs, respectively. We confirmed the key communication pathways and players at the single-cell level in patients with melanoma. Our network-based ML approach can be used to expand ICIs' clinical benefits in cancer patients.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adj0785</identifier><identifier>PMID: 38295179</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biomedicine and Life Sciences ; Cancer ; Cell Communication ; Chemotaxis ; Humans ; Immune Checkpoint Inhibitors - pharmacology ; Immune Checkpoint Inhibitors - therapeutic use ; Immunology ; Machine Learning ; Melanoma ; SciAdv r-articles</subject><ispartof>Science advances, 2024-02, Vol.10 (5), p.eadj0785</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-1f55ff7083c7b3c4e7b0c5aa65114c0500aaa9c8bdc1171a2e6e7861f0767d2a3</cites><orcidid>0000-0002-8097-3675 ; 0000-0002-3173-1856 ; 0000-0003-3466-2638 ; 0000-0002-3449-3814 ; 0000-0003-2749-8665 ; 0000-0002-3683-0378 ; 0000-0002-4134-3953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830106/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830106/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38295179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Juhun</creatorcontrib><creatorcontrib>Kim, Donghyo</creatorcontrib><creatorcontrib>Kong, JungHo</creatorcontrib><creatorcontrib>Ha, Doyeon</creatorcontrib><creatorcontrib>Kim, Inhae</creatorcontrib><creatorcontrib>Park, Minhyuk</creatorcontrib><creatorcontrib>Lee, Kwanghwan</creatorcontrib><creatorcontrib>Im, Sin-Hyeog</creatorcontrib><creatorcontrib>Kim, Sanguk</creatorcontrib><title>Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. However, only some patients respond to ICIs, and current biomarkers for ICI efficacy have limited performance. Here, we devised an interpretable machine learning (ML) model trained using patient-specific cell-cell communication networks (CCNs) decoded from the patient's bulk tumor transcriptome. The model could (i) predict ICI efficacy for patients across four cancer types (median AUROC: 0.79) and (ii) identify key communication pathways with crucial players responsible for patient response or resistance to ICIs by analyzing more than 700 ICI-treated patient samples from 11 cohorts. The model prioritized chemotaxis communication of immune-related cells and growth factor communication of structural cells as the key biological processes underlying response and resistance to ICIs, respectively. We confirmed the key communication pathways and players at the single-cell level in patients with melanoma. Our network-based ML approach can be used to expand ICIs' clinical benefits in cancer patients.</description><subject>Biomedicine and Life Sciences</subject><subject>Cancer</subject><subject>Cell Communication</subject><subject>Chemotaxis</subject><subject>Humans</subject><subject>Immune Checkpoint Inhibitors - pharmacology</subject><subject>Immune Checkpoint Inhibitors - therapeutic use</subject><subject>Immunology</subject><subject>Machine Learning</subject><subject>Melanoma</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFv1DAQhaMK1FalV47IRy5ZPEkcJyeEVlCQKnGBszWZTLpuEzvY3iJ-AP-7Xu1Slct4pHn-3tivKN6C3ABU7YdIFsfHDY73UnfqrLisaq3KSjXdqxf9RXEd472UEpq2VdCfFxd1V_UKdH9Z_N3yPJeUiyC_LHtnCZP1TjhOv314KAeMPArrEoc1cMJhZrEg7axjMTMGZ92dyJPRUoqC0BEHsWYGuyQCx9W7yCJ5YQ90FrRjelh9Bmbozg42-RDfFK8nnCNfn86r4ueXzz-2X8vb7zfftp9uS6qbNpUwKTVNWnY16aGmhvUgSSHmV0FDUkmJiD11w0gAGrDilnXXwiR1q8cK66vi45G77oeFR8o7BpzNGuyC4Y_xaM3_E2d35s4_GsieEmSbCe9PhOB_7Tkms9h4-D507PfRVH0FAEqqJks3RykFH2Pg6dkHpDnkZ475mVN--cK7l9s9y_-lVT8BxoGdmg</recordid><startdate>20240202</startdate><enddate>20240202</enddate><creator>Lee, Juhun</creator><creator>Kim, Donghyo</creator><creator>Kong, JungHo</creator><creator>Ha, Doyeon</creator><creator>Kim, Inhae</creator><creator>Park, Minhyuk</creator><creator>Lee, Kwanghwan</creator><creator>Im, Sin-Hyeog</creator><creator>Kim, Sanguk</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8097-3675</orcidid><orcidid>https://orcid.org/0000-0002-3173-1856</orcidid><orcidid>https://orcid.org/0000-0003-3466-2638</orcidid><orcidid>https://orcid.org/0000-0002-3449-3814</orcidid><orcidid>https://orcid.org/0000-0003-2749-8665</orcidid><orcidid>https://orcid.org/0000-0002-3683-0378</orcidid><orcidid>https://orcid.org/0000-0002-4134-3953</orcidid></search><sort><creationdate>20240202</creationdate><title>Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors</title><author>Lee, Juhun ; Kim, Donghyo ; Kong, JungHo ; Ha, Doyeon ; Kim, Inhae ; Park, Minhyuk ; Lee, Kwanghwan ; Im, Sin-Hyeog ; Kim, Sanguk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-1f55ff7083c7b3c4e7b0c5aa65114c0500aaa9c8bdc1171a2e6e7861f0767d2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedicine and Life Sciences</topic><topic>Cancer</topic><topic>Cell Communication</topic><topic>Chemotaxis</topic><topic>Humans</topic><topic>Immune Checkpoint Inhibitors - pharmacology</topic><topic>Immune Checkpoint Inhibitors - therapeutic use</topic><topic>Immunology</topic><topic>Machine Learning</topic><topic>Melanoma</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Juhun</creatorcontrib><creatorcontrib>Kim, Donghyo</creatorcontrib><creatorcontrib>Kong, JungHo</creatorcontrib><creatorcontrib>Ha, Doyeon</creatorcontrib><creatorcontrib>Kim, Inhae</creatorcontrib><creatorcontrib>Park, Minhyuk</creatorcontrib><creatorcontrib>Lee, Kwanghwan</creatorcontrib><creatorcontrib>Im, Sin-Hyeog</creatorcontrib><creatorcontrib>Kim, Sanguk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Juhun</au><au>Kim, Donghyo</au><au>Kong, JungHo</au><au>Ha, Doyeon</au><au>Kim, Inhae</au><au>Park, Minhyuk</au><au>Lee, Kwanghwan</au><au>Im, Sin-Hyeog</au><au>Kim, Sanguk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-02-02</date><risdate>2024</risdate><volume>10</volume><issue>5</issue><spage>eadj0785</spage><pages>eadj0785-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. However, only some patients respond to ICIs, and current biomarkers for ICI efficacy have limited performance. Here, we devised an interpretable machine learning (ML) model trained using patient-specific cell-cell communication networks (CCNs) decoded from the patient's bulk tumor transcriptome. The model could (i) predict ICI efficacy for patients across four cancer types (median AUROC: 0.79) and (ii) identify key communication pathways with crucial players responsible for patient response or resistance to ICIs by analyzing more than 700 ICI-treated patient samples from 11 cohorts. The model prioritized chemotaxis communication of immune-related cells and growth factor communication of structural cells as the key biological processes underlying response and resistance to ICIs, respectively. We confirmed the key communication pathways and players at the single-cell level in patients with melanoma. Our network-based ML approach can be used to expand ICIs' clinical benefits in cancer patients.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>38295179</pmid><doi>10.1126/sciadv.adj0785</doi><orcidid>https://orcid.org/0000-0002-8097-3675</orcidid><orcidid>https://orcid.org/0000-0002-3173-1856</orcidid><orcidid>https://orcid.org/0000-0003-3466-2638</orcidid><orcidid>https://orcid.org/0000-0002-3449-3814</orcidid><orcidid>https://orcid.org/0000-0003-2749-8665</orcidid><orcidid>https://orcid.org/0000-0002-3683-0378</orcidid><orcidid>https://orcid.org/0000-0002-4134-3953</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2024-02, Vol.10 (5), p.eadj0785 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830106 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library |
subjects | Biomedicine and Life Sciences Cancer Cell Communication Chemotaxis Humans Immune Checkpoint Inhibitors - pharmacology Immune Checkpoint Inhibitors - therapeutic use Immunology Machine Learning Melanoma SciAdv r-articles |
title | Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell-cell%20communication%20network-based%20interpretable%20machine%20learning%20predicts%20cancer%20patient%20response%20to%20immune%20checkpoint%20inhibitors&rft.jtitle=Science%20advances&rft.au=Lee,%20Juhun&rft.date=2024-02-02&rft.volume=10&rft.issue=5&rft.spage=eadj0785&rft.pages=eadj0785-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adj0785&rft_dat=%3Cproquest_pubme%3E2921115054%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921115054&rft_id=info:pmid/38295179&rfr_iscdi=true |