Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia

Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports. Medicine 2024-01, Vol.5 (1), p.101359, Article 101359
Hauptverfasser: Pino, James C, Posso, Camilo, Joshi, Sunil K, Nestor, Michael, Moon, Jamie, Hansen, Joshua R, Hutchinson-Bunch, Chelsea, Gritsenko, Marina A, Weitz, Karl K, Watanabe-Smith, Kevin, Long, Nicola, McDermott, Jason E, Druker, Brian J, Liu, Tao, Tyner, Jeffrey W, Agarwal, Anupriya, Traer, Elie, Piehowski, Paul D, Tognon, Cristina E, Rodland, Karin D, Gosline, Sara J C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 101359
container_title Cell reports. Medicine
container_volume 5
creator Pino, James C
Posso, Camilo
Joshi, Sunil K
Nestor, Michael
Moon, Jamie
Hansen, Joshua R
Hutchinson-Bunch, Chelsea
Gritsenko, Marina A
Weitz, Karl K
Watanabe-Smith, Kevin
Long, Nicola
McDermott, Jason E
Druker, Brian J
Liu, Tao
Tyner, Jeffrey W
Agarwal, Anupriya
Traer, Elie
Piehowski, Paul D
Tognon, Cristina E
Rodland, Karin D
Gosline, Sara J C
description Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML.
doi_str_mv 10.1016/j.xcrm.2023.101359
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10829797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916406921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2969-42f10aa581ceb5e6106b943c3f572e012b60ea756f6749f989a15b50f4dada1d3</originalsourceid><addsrcrecordid>eNpVkU9v1DAQxS0EolXpF-CALE5cdrHHiROfEKr4JxVxgbM1cSa7XhI72A6i355EW6py8sjvzRt7foy9lGIvhdRvT_s_Lk17EKC2C1WbJ-wStNY71Rj59FF9wa5zPgkhoJayVeI5u1AtKGgEXDL8ivPsw4GXI_E5xULxQCFO3vERQ58dzsQpYDdSXnXqvSs-Bh4H3qflwBPlOYZM3AeObinEpzsao-_5SMtPmjy-YM8GHDNd359X7MfHD99vPu9uv336cvP-dufAaLOrYJACsW6lo64mLYXuTKWcGuoGSEjotCBsaj3opjKDaQ3KuqvFUPXYo-zVFXt3zp2XbqLeUSgJRzsnP2G6sxG9_V8J_mgP8beVogXTmGZNeH1OiLl4m50v5I4uhkCuWIAWQG-mN_djUvy1UC528tnRuG6L4pItGKkroQ3I1Qpnq0sx50TDw2OksBtEe7IbRLtBtGeIa9Orx994aPmHTP0FAPma1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916406921</pqid></control><display><type>article</type><title>Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pino, James C ; Posso, Camilo ; Joshi, Sunil K ; Nestor, Michael ; Moon, Jamie ; Hansen, Joshua R ; Hutchinson-Bunch, Chelsea ; Gritsenko, Marina A ; Weitz, Karl K ; Watanabe-Smith, Kevin ; Long, Nicola ; McDermott, Jason E ; Druker, Brian J ; Liu, Tao ; Tyner, Jeffrey W ; Agarwal, Anupriya ; Traer, Elie ; Piehowski, Paul D ; Tognon, Cristina E ; Rodland, Karin D ; Gosline, Sara J C</creator><creatorcontrib>Pino, James C ; Posso, Camilo ; Joshi, Sunil K ; Nestor, Michael ; Moon, Jamie ; Hansen, Joshua R ; Hutchinson-Bunch, Chelsea ; Gritsenko, Marina A ; Weitz, Karl K ; Watanabe-Smith, Kevin ; Long, Nicola ; McDermott, Jason E ; Druker, Brian J ; Liu, Tao ; Tyner, Jeffrey W ; Agarwal, Anupriya ; Traer, Elie ; Piehowski, Paul D ; Tognon, Cristina E ; Rodland, Karin D ; Gosline, Sara J C ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML.</description><identifier>ISSN: 2666-3791</identifier><identifier>EISSN: 2666-3791</identifier><identifier>DOI: 10.1016/j.xcrm.2023.101359</identifier><identifier>PMID: 38232702</identifier><language>eng</language><publisher>United States: Cell Press</publisher><subject>acute myeloid leukemia ; BASIC BIOLOGICAL SCIENCES ; drug response ; genomics ; Genomics - methods ; Humans ; Leukemia, Myeloid, Acute - drug therapy ; Leukemia, Myeloid, Acute - genetics ; Leukemia, Myeloid, Acute - metabolism ; linear regression ; multi-omics ; Mutation ; non-negative matrix factorization ; Proteogenomics ; proteomics ; Proteomics - methods ; transcriptomics</subject><ispartof>Cell reports. Medicine, 2024-01, Vol.5 (1), p.101359, Article 101359</ispartof><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2969-42f10aa581ceb5e6106b943c3f572e012b60ea756f6749f989a15b50f4dada1d3</cites><orcidid>0000-0002-6534-4774 ; 0000000265344774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829797/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829797/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38232702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2282267$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pino, James C</creatorcontrib><creatorcontrib>Posso, Camilo</creatorcontrib><creatorcontrib>Joshi, Sunil K</creatorcontrib><creatorcontrib>Nestor, Michael</creatorcontrib><creatorcontrib>Moon, Jamie</creatorcontrib><creatorcontrib>Hansen, Joshua R</creatorcontrib><creatorcontrib>Hutchinson-Bunch, Chelsea</creatorcontrib><creatorcontrib>Gritsenko, Marina A</creatorcontrib><creatorcontrib>Weitz, Karl K</creatorcontrib><creatorcontrib>Watanabe-Smith, Kevin</creatorcontrib><creatorcontrib>Long, Nicola</creatorcontrib><creatorcontrib>McDermott, Jason E</creatorcontrib><creatorcontrib>Druker, Brian J</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Tyner, Jeffrey W</creatorcontrib><creatorcontrib>Agarwal, Anupriya</creatorcontrib><creatorcontrib>Traer, Elie</creatorcontrib><creatorcontrib>Piehowski, Paul D</creatorcontrib><creatorcontrib>Tognon, Cristina E</creatorcontrib><creatorcontrib>Rodland, Karin D</creatorcontrib><creatorcontrib>Gosline, Sara J C</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia</title><title>Cell reports. Medicine</title><addtitle>Cell Rep Med</addtitle><description>Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML.</description><subject>acute myeloid leukemia</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>drug response</subject><subject>genomics</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Leukemia, Myeloid, Acute - drug therapy</subject><subject>Leukemia, Myeloid, Acute - genetics</subject><subject>Leukemia, Myeloid, Acute - metabolism</subject><subject>linear regression</subject><subject>multi-omics</subject><subject>Mutation</subject><subject>non-negative matrix factorization</subject><subject>Proteogenomics</subject><subject>proteomics</subject><subject>Proteomics - methods</subject><subject>transcriptomics</subject><issn>2666-3791</issn><issn>2666-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU9v1DAQxS0EolXpF-CALE5cdrHHiROfEKr4JxVxgbM1cSa7XhI72A6i355EW6py8sjvzRt7foy9lGIvhdRvT_s_Lk17EKC2C1WbJ-wStNY71Rj59FF9wa5zPgkhoJayVeI5u1AtKGgEXDL8ivPsw4GXI_E5xULxQCFO3vERQ58dzsQpYDdSXnXqvSs-Bh4H3qflwBPlOYZM3AeObinEpzsao-_5SMtPmjy-YM8GHDNd359X7MfHD99vPu9uv336cvP-dufAaLOrYJACsW6lo64mLYXuTKWcGuoGSEjotCBsaj3opjKDaQ3KuqvFUPXYo-zVFXt3zp2XbqLeUSgJRzsnP2G6sxG9_V8J_mgP8beVogXTmGZNeH1OiLl4m50v5I4uhkCuWIAWQG-mN_djUvy1UC528tnRuG6L4pItGKkroQ3I1Qpnq0sx50TDw2OksBtEe7IbRLtBtGeIa9Orx994aPmHTP0FAPma1w</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>Pino, James C</creator><creator>Posso, Camilo</creator><creator>Joshi, Sunil K</creator><creator>Nestor, Michael</creator><creator>Moon, Jamie</creator><creator>Hansen, Joshua R</creator><creator>Hutchinson-Bunch, Chelsea</creator><creator>Gritsenko, Marina A</creator><creator>Weitz, Karl K</creator><creator>Watanabe-Smith, Kevin</creator><creator>Long, Nicola</creator><creator>McDermott, Jason E</creator><creator>Druker, Brian J</creator><creator>Liu, Tao</creator><creator>Tyner, Jeffrey W</creator><creator>Agarwal, Anupriya</creator><creator>Traer, Elie</creator><creator>Piehowski, Paul D</creator><creator>Tognon, Cristina E</creator><creator>Rodland, Karin D</creator><creator>Gosline, Sara J C</creator><general>Cell Press</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6534-4774</orcidid><orcidid>https://orcid.org/0000000265344774</orcidid></search><sort><creationdate>20240116</creationdate><title>Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia</title><author>Pino, James C ; Posso, Camilo ; Joshi, Sunil K ; Nestor, Michael ; Moon, Jamie ; Hansen, Joshua R ; Hutchinson-Bunch, Chelsea ; Gritsenko, Marina A ; Weitz, Karl K ; Watanabe-Smith, Kevin ; Long, Nicola ; McDermott, Jason E ; Druker, Brian J ; Liu, Tao ; Tyner, Jeffrey W ; Agarwal, Anupriya ; Traer, Elie ; Piehowski, Paul D ; Tognon, Cristina E ; Rodland, Karin D ; Gosline, Sara J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2969-42f10aa581ceb5e6106b943c3f572e012b60ea756f6749f989a15b50f4dada1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acute myeloid leukemia</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>drug response</topic><topic>genomics</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Leukemia, Myeloid, Acute - drug therapy</topic><topic>Leukemia, Myeloid, Acute - genetics</topic><topic>Leukemia, Myeloid, Acute - metabolism</topic><topic>linear regression</topic><topic>multi-omics</topic><topic>Mutation</topic><topic>non-negative matrix factorization</topic><topic>Proteogenomics</topic><topic>proteomics</topic><topic>Proteomics - methods</topic><topic>transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pino, James C</creatorcontrib><creatorcontrib>Posso, Camilo</creatorcontrib><creatorcontrib>Joshi, Sunil K</creatorcontrib><creatorcontrib>Nestor, Michael</creatorcontrib><creatorcontrib>Moon, Jamie</creatorcontrib><creatorcontrib>Hansen, Joshua R</creatorcontrib><creatorcontrib>Hutchinson-Bunch, Chelsea</creatorcontrib><creatorcontrib>Gritsenko, Marina A</creatorcontrib><creatorcontrib>Weitz, Karl K</creatorcontrib><creatorcontrib>Watanabe-Smith, Kevin</creatorcontrib><creatorcontrib>Long, Nicola</creatorcontrib><creatorcontrib>McDermott, Jason E</creatorcontrib><creatorcontrib>Druker, Brian J</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Tyner, Jeffrey W</creatorcontrib><creatorcontrib>Agarwal, Anupriya</creatorcontrib><creatorcontrib>Traer, Elie</creatorcontrib><creatorcontrib>Piehowski, Paul D</creatorcontrib><creatorcontrib>Tognon, Cristina E</creatorcontrib><creatorcontrib>Rodland, Karin D</creatorcontrib><creatorcontrib>Gosline, Sara J C</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell reports. Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pino, James C</au><au>Posso, Camilo</au><au>Joshi, Sunil K</au><au>Nestor, Michael</au><au>Moon, Jamie</au><au>Hansen, Joshua R</au><au>Hutchinson-Bunch, Chelsea</au><au>Gritsenko, Marina A</au><au>Weitz, Karl K</au><au>Watanabe-Smith, Kevin</au><au>Long, Nicola</au><au>McDermott, Jason E</au><au>Druker, Brian J</au><au>Liu, Tao</au><au>Tyner, Jeffrey W</au><au>Agarwal, Anupriya</au><au>Traer, Elie</au><au>Piehowski, Paul D</au><au>Tognon, Cristina E</au><au>Rodland, Karin D</au><au>Gosline, Sara J C</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia</atitle><jtitle>Cell reports. Medicine</jtitle><addtitle>Cell Rep Med</addtitle><date>2024-01-16</date><risdate>2024</risdate><volume>5</volume><issue>1</issue><spage>101359</spage><pages>101359-</pages><artnum>101359</artnum><issn>2666-3791</issn><eissn>2666-3791</eissn><abstract>Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML.</abstract><cop>United States</cop><pub>Cell Press</pub><pmid>38232702</pmid><doi>10.1016/j.xcrm.2023.101359</doi><orcidid>https://orcid.org/0000-0002-6534-4774</orcidid><orcidid>https://orcid.org/0000000265344774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-3791
ispartof Cell reports. Medicine, 2024-01, Vol.5 (1), p.101359, Article 101359
issn 2666-3791
2666-3791
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10829797
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects acute myeloid leukemia
BASIC BIOLOGICAL SCIENCES
drug response
genomics
Genomics - methods
Humans
Leukemia, Myeloid, Acute - drug therapy
Leukemia, Myeloid, Acute - genetics
Leukemia, Myeloid, Acute - metabolism
linear regression
multi-omics
Mutation
non-negative matrix factorization
Proteogenomics
proteomics
Proteomics - methods
transcriptomics
title Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20proteogenomic%20landscape%20enables%20prediction%20of%20drug%20response%20in%20acute%20myeloid%20leukemia&rft.jtitle=Cell%20reports.%20Medicine&rft.au=Pino,%20James%20C&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-01-16&rft.volume=5&rft.issue=1&rft.spage=101359&rft.pages=101359-&rft.artnum=101359&rft.issn=2666-3791&rft.eissn=2666-3791&rft_id=info:doi/10.1016/j.xcrm.2023.101359&rft_dat=%3Cproquest_pubme%3E2916406921%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916406921&rft_id=info:pmid/38232702&rfr_iscdi=true