Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia
Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity dat...
Gespeichert in:
Veröffentlicht in: | Cell reports. Medicine 2024-01, Vol.5 (1), p.101359, Article 101359 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 101359 |
container_title | Cell reports. Medicine |
container_volume | 5 |
creator | Pino, James C Posso, Camilo Joshi, Sunil K Nestor, Michael Moon, Jamie Hansen, Joshua R Hutchinson-Bunch, Chelsea Gritsenko, Marina A Weitz, Karl K Watanabe-Smith, Kevin Long, Nicola McDermott, Jason E Druker, Brian J Liu, Tao Tyner, Jeffrey W Agarwal, Anupriya Traer, Elie Piehowski, Paul D Tognon, Cristina E Rodland, Karin D Gosline, Sara J C |
description | Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML. |
doi_str_mv | 10.1016/j.xcrm.2023.101359 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10829797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916406921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2969-42f10aa581ceb5e6106b943c3f572e012b60ea756f6749f989a15b50f4dada1d3</originalsourceid><addsrcrecordid>eNpVkU9v1DAQxS0EolXpF-CALE5cdrHHiROfEKr4JxVxgbM1cSa7XhI72A6i355EW6py8sjvzRt7foy9lGIvhdRvT_s_Lk17EKC2C1WbJ-wStNY71Rj59FF9wa5zPgkhoJayVeI5u1AtKGgEXDL8ivPsw4GXI_E5xULxQCFO3vERQ58dzsQpYDdSXnXqvSs-Bh4H3qflwBPlOYZM3AeObinEpzsao-_5SMtPmjy-YM8GHDNd359X7MfHD99vPu9uv336cvP-dufAaLOrYJACsW6lo64mLYXuTKWcGuoGSEjotCBsaj3opjKDaQ3KuqvFUPXYo-zVFXt3zp2XbqLeUSgJRzsnP2G6sxG9_V8J_mgP8beVogXTmGZNeH1OiLl4m50v5I4uhkCuWIAWQG-mN_djUvy1UC528tnRuG6L4pItGKkroQ3I1Qpnq0sx50TDw2OksBtEe7IbRLtBtGeIa9Orx994aPmHTP0FAPma1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916406921</pqid></control><display><type>article</type><title>Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pino, James C ; Posso, Camilo ; Joshi, Sunil K ; Nestor, Michael ; Moon, Jamie ; Hansen, Joshua R ; Hutchinson-Bunch, Chelsea ; Gritsenko, Marina A ; Weitz, Karl K ; Watanabe-Smith, Kevin ; Long, Nicola ; McDermott, Jason E ; Druker, Brian J ; Liu, Tao ; Tyner, Jeffrey W ; Agarwal, Anupriya ; Traer, Elie ; Piehowski, Paul D ; Tognon, Cristina E ; Rodland, Karin D ; Gosline, Sara J C</creator><creatorcontrib>Pino, James C ; Posso, Camilo ; Joshi, Sunil K ; Nestor, Michael ; Moon, Jamie ; Hansen, Joshua R ; Hutchinson-Bunch, Chelsea ; Gritsenko, Marina A ; Weitz, Karl K ; Watanabe-Smith, Kevin ; Long, Nicola ; McDermott, Jason E ; Druker, Brian J ; Liu, Tao ; Tyner, Jeffrey W ; Agarwal, Anupriya ; Traer, Elie ; Piehowski, Paul D ; Tognon, Cristina E ; Rodland, Karin D ; Gosline, Sara J C ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML.</description><identifier>ISSN: 2666-3791</identifier><identifier>EISSN: 2666-3791</identifier><identifier>DOI: 10.1016/j.xcrm.2023.101359</identifier><identifier>PMID: 38232702</identifier><language>eng</language><publisher>United States: Cell Press</publisher><subject>acute myeloid leukemia ; BASIC BIOLOGICAL SCIENCES ; drug response ; genomics ; Genomics - methods ; Humans ; Leukemia, Myeloid, Acute - drug therapy ; Leukemia, Myeloid, Acute - genetics ; Leukemia, Myeloid, Acute - metabolism ; linear regression ; multi-omics ; Mutation ; non-negative matrix factorization ; Proteogenomics ; proteomics ; Proteomics - methods ; transcriptomics</subject><ispartof>Cell reports. Medicine, 2024-01, Vol.5 (1), p.101359, Article 101359</ispartof><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2969-42f10aa581ceb5e6106b943c3f572e012b60ea756f6749f989a15b50f4dada1d3</cites><orcidid>0000-0002-6534-4774 ; 0000000265344774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829797/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829797/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38232702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2282267$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pino, James C</creatorcontrib><creatorcontrib>Posso, Camilo</creatorcontrib><creatorcontrib>Joshi, Sunil K</creatorcontrib><creatorcontrib>Nestor, Michael</creatorcontrib><creatorcontrib>Moon, Jamie</creatorcontrib><creatorcontrib>Hansen, Joshua R</creatorcontrib><creatorcontrib>Hutchinson-Bunch, Chelsea</creatorcontrib><creatorcontrib>Gritsenko, Marina A</creatorcontrib><creatorcontrib>Weitz, Karl K</creatorcontrib><creatorcontrib>Watanabe-Smith, Kevin</creatorcontrib><creatorcontrib>Long, Nicola</creatorcontrib><creatorcontrib>McDermott, Jason E</creatorcontrib><creatorcontrib>Druker, Brian J</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Tyner, Jeffrey W</creatorcontrib><creatorcontrib>Agarwal, Anupriya</creatorcontrib><creatorcontrib>Traer, Elie</creatorcontrib><creatorcontrib>Piehowski, Paul D</creatorcontrib><creatorcontrib>Tognon, Cristina E</creatorcontrib><creatorcontrib>Rodland, Karin D</creatorcontrib><creatorcontrib>Gosline, Sara J C</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia</title><title>Cell reports. Medicine</title><addtitle>Cell Rep Med</addtitle><description>Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML.</description><subject>acute myeloid leukemia</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>drug response</subject><subject>genomics</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Leukemia, Myeloid, Acute - drug therapy</subject><subject>Leukemia, Myeloid, Acute - genetics</subject><subject>Leukemia, Myeloid, Acute - metabolism</subject><subject>linear regression</subject><subject>multi-omics</subject><subject>Mutation</subject><subject>non-negative matrix factorization</subject><subject>Proteogenomics</subject><subject>proteomics</subject><subject>Proteomics - methods</subject><subject>transcriptomics</subject><issn>2666-3791</issn><issn>2666-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU9v1DAQxS0EolXpF-CALE5cdrHHiROfEKr4JxVxgbM1cSa7XhI72A6i355EW6py8sjvzRt7foy9lGIvhdRvT_s_Lk17EKC2C1WbJ-wStNY71Rj59FF9wa5zPgkhoJayVeI5u1AtKGgEXDL8ivPsw4GXI_E5xULxQCFO3vERQ58dzsQpYDdSXnXqvSs-Bh4H3qflwBPlOYZM3AeObinEpzsao-_5SMtPmjy-YM8GHDNd359X7MfHD99vPu9uv336cvP-dufAaLOrYJACsW6lo64mLYXuTKWcGuoGSEjotCBsaj3opjKDaQ3KuqvFUPXYo-zVFXt3zp2XbqLeUSgJRzsnP2G6sxG9_V8J_mgP8beVogXTmGZNeH1OiLl4m50v5I4uhkCuWIAWQG-mN_djUvy1UC528tnRuG6L4pItGKkroQ3I1Qpnq0sx50TDw2OksBtEe7IbRLtBtGeIa9Orx994aPmHTP0FAPma1w</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>Pino, James C</creator><creator>Posso, Camilo</creator><creator>Joshi, Sunil K</creator><creator>Nestor, Michael</creator><creator>Moon, Jamie</creator><creator>Hansen, Joshua R</creator><creator>Hutchinson-Bunch, Chelsea</creator><creator>Gritsenko, Marina A</creator><creator>Weitz, Karl K</creator><creator>Watanabe-Smith, Kevin</creator><creator>Long, Nicola</creator><creator>McDermott, Jason E</creator><creator>Druker, Brian J</creator><creator>Liu, Tao</creator><creator>Tyner, Jeffrey W</creator><creator>Agarwal, Anupriya</creator><creator>Traer, Elie</creator><creator>Piehowski, Paul D</creator><creator>Tognon, Cristina E</creator><creator>Rodland, Karin D</creator><creator>Gosline, Sara J C</creator><general>Cell Press</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6534-4774</orcidid><orcidid>https://orcid.org/0000000265344774</orcidid></search><sort><creationdate>20240116</creationdate><title>Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia</title><author>Pino, James C ; Posso, Camilo ; Joshi, Sunil K ; Nestor, Michael ; Moon, Jamie ; Hansen, Joshua R ; Hutchinson-Bunch, Chelsea ; Gritsenko, Marina A ; Weitz, Karl K ; Watanabe-Smith, Kevin ; Long, Nicola ; McDermott, Jason E ; Druker, Brian J ; Liu, Tao ; Tyner, Jeffrey W ; Agarwal, Anupriya ; Traer, Elie ; Piehowski, Paul D ; Tognon, Cristina E ; Rodland, Karin D ; Gosline, Sara J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2969-42f10aa581ceb5e6106b943c3f572e012b60ea756f6749f989a15b50f4dada1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acute myeloid leukemia</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>drug response</topic><topic>genomics</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Leukemia, Myeloid, Acute - drug therapy</topic><topic>Leukemia, Myeloid, Acute - genetics</topic><topic>Leukemia, Myeloid, Acute - metabolism</topic><topic>linear regression</topic><topic>multi-omics</topic><topic>Mutation</topic><topic>non-negative matrix factorization</topic><topic>Proteogenomics</topic><topic>proteomics</topic><topic>Proteomics - methods</topic><topic>transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pino, James C</creatorcontrib><creatorcontrib>Posso, Camilo</creatorcontrib><creatorcontrib>Joshi, Sunil K</creatorcontrib><creatorcontrib>Nestor, Michael</creatorcontrib><creatorcontrib>Moon, Jamie</creatorcontrib><creatorcontrib>Hansen, Joshua R</creatorcontrib><creatorcontrib>Hutchinson-Bunch, Chelsea</creatorcontrib><creatorcontrib>Gritsenko, Marina A</creatorcontrib><creatorcontrib>Weitz, Karl K</creatorcontrib><creatorcontrib>Watanabe-Smith, Kevin</creatorcontrib><creatorcontrib>Long, Nicola</creatorcontrib><creatorcontrib>McDermott, Jason E</creatorcontrib><creatorcontrib>Druker, Brian J</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Tyner, Jeffrey W</creatorcontrib><creatorcontrib>Agarwal, Anupriya</creatorcontrib><creatorcontrib>Traer, Elie</creatorcontrib><creatorcontrib>Piehowski, Paul D</creatorcontrib><creatorcontrib>Tognon, Cristina E</creatorcontrib><creatorcontrib>Rodland, Karin D</creatorcontrib><creatorcontrib>Gosline, Sara J C</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell reports. Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pino, James C</au><au>Posso, Camilo</au><au>Joshi, Sunil K</au><au>Nestor, Michael</au><au>Moon, Jamie</au><au>Hansen, Joshua R</au><au>Hutchinson-Bunch, Chelsea</au><au>Gritsenko, Marina A</au><au>Weitz, Karl K</au><au>Watanabe-Smith, Kevin</au><au>Long, Nicola</au><au>McDermott, Jason E</au><au>Druker, Brian J</au><au>Liu, Tao</au><au>Tyner, Jeffrey W</au><au>Agarwal, Anupriya</au><au>Traer, Elie</au><au>Piehowski, Paul D</au><au>Tognon, Cristina E</au><au>Rodland, Karin D</au><au>Gosline, Sara J C</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia</atitle><jtitle>Cell reports. Medicine</jtitle><addtitle>Cell Rep Med</addtitle><date>2024-01-16</date><risdate>2024</risdate><volume>5</volume><issue>1</issue><spage>101359</spage><pages>101359-</pages><artnum>101359</artnum><issn>2666-3791</issn><eissn>2666-3791</eissn><abstract>Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML.</abstract><cop>United States</cop><pub>Cell Press</pub><pmid>38232702</pmid><doi>10.1016/j.xcrm.2023.101359</doi><orcidid>https://orcid.org/0000-0002-6534-4774</orcidid><orcidid>https://orcid.org/0000000265344774</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-3791 |
ispartof | Cell reports. Medicine, 2024-01, Vol.5 (1), p.101359, Article 101359 |
issn | 2666-3791 2666-3791 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10829797 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | acute myeloid leukemia BASIC BIOLOGICAL SCIENCES drug response genomics Genomics - methods Humans Leukemia, Myeloid, Acute - drug therapy Leukemia, Myeloid, Acute - genetics Leukemia, Myeloid, Acute - metabolism linear regression multi-omics Mutation non-negative matrix factorization Proteogenomics proteomics Proteomics - methods transcriptomics |
title | Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20proteogenomic%20landscape%20enables%20prediction%20of%20drug%20response%20in%20acute%20myeloid%20leukemia&rft.jtitle=Cell%20reports.%20Medicine&rft.au=Pino,%20James%20C&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-01-16&rft.volume=5&rft.issue=1&rft.spage=101359&rft.pages=101359-&rft.artnum=101359&rft.issn=2666-3791&rft.eissn=2666-3791&rft_id=info:doi/10.1016/j.xcrm.2023.101359&rft_dat=%3Cproquest_pubme%3E2916406921%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916406921&rft_id=info:pmid/38232702&rfr_iscdi=true |