Utilizing Precursor Ion Connectivity of Different Charge States to Improve Peptide and Protein Identification in MS/MS Analysis
Tandem mass spectrometry (MS/MS) has become a key method for the structural analysis of biomolecules such as peptides and proteins. A pervasive problem in MS/MS analyses, especially for top-down proteomics, is the occurrence of chimeric spectra, when two or more precursor ions are co-isolated and fr...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2024-01, Vol.96 (3), p.985-990 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 990 |
---|---|
container_issue | 3 |
container_start_page | 985 |
container_title | Analytical chemistry (Washington) |
container_volume | 96 |
creator | Adair, Lily R. Jones, Ian Cramer, Rainer |
description | Tandem mass spectrometry (MS/MS) has become a key method for the structural analysis of biomolecules such as peptides and proteins. A pervasive problem in MS/MS analyses, especially for top-down proteomics, is the occurrence of chimeric spectra, when two or more precursor ions are co-isolated and fragmented, thus leading to complex MS/MS spectra that are populated with fragment ions originating from different precursor ions. This type of convoluted data typically results in low sequence database search scores due to the vast number of mixed-source fragment ions, of which only a fraction originates from a specific precursor ion. Herein, we present a novel workflow that deconvolutes the data of chimeric MS/MS spectra, improving the protein search scores and sequence coverages in database searching and thus providing a more confident peptide and protein identification. Previously misidentified proteins or proteins with insignificant search scores can be correctly and significantly identified following the presented data acquisition and analysis workflow with search scores increasing by a factor of 3–4 for smaller precursor ions (peptides) and >6 for larger precursor ions such as intact ubiquitin and cytochrome C. |
doi_str_mv | 10.1021/acs.analchem.3c03061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10809226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918617020</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-6653dded02b185b4aab4a5ce4823c36ac083f7c4f7307d1ef2677e7bc66e21ed3</originalsourceid><addsrcrecordid>eNp9kc1uGyEUhUdVq8ZN-wZVhdRNN-NcYAbGqypy_ywlaiQ3a4SZOzbRDLjAWHI3efWQ2rHaLrpASPCdw7mconhLYUqB0Qtt4lQ73ZsNDlNugIOgz4oJrRmUomnY82ICALxkEuCseBXjHQClQMXL4ow3dMZlNZsU97fJ9vaXdWtyE9CMIfpAFt6RuXcOTbI7m_bEd-ST7ToM6BKZb3RYI1kmnTCS5Mli2Aa_Q3KD22RbJNq12cwntI4s2iyxnTU62eyaT66XF9dLcpmT76ONr4sXne4jvjnu58Xtl88_5t_Kq-9fF_PLq1JXskmlEDVvW2yBrWhTryqt86oNVg3jhgttoOGdNFUnOciWYseElChXRghkFFt-Xnw8-G7H1YCtyamC7tU22EGHvfLaqr9vnN2otd8pCg3MGBPZ4cPRIfifI8akBhsN9r126Meo2IyyOn-2rDL6_h_0zo8hT_ybagSVwCBT1YEywccYsDuloaAeK1a5YvVUsTpWnGXv_pzkJHrqNANwAB7lp4f_6_kAtzu4HA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918617020</pqid></control><display><type>article</type><title>Utilizing Precursor Ion Connectivity of Different Charge States to Improve Peptide and Protein Identification in MS/MS Analysis</title><source>MEDLINE</source><source>ACS Publications</source><creator>Adair, Lily R. ; Jones, Ian ; Cramer, Rainer</creator><creatorcontrib>Adair, Lily R. ; Jones, Ian ; Cramer, Rainer</creatorcontrib><description>Tandem mass spectrometry (MS/MS) has become a key method for the structural analysis of biomolecules such as peptides and proteins. A pervasive problem in MS/MS analyses, especially for top-down proteomics, is the occurrence of chimeric spectra, when two or more precursor ions are co-isolated and fragmented, thus leading to complex MS/MS spectra that are populated with fragment ions originating from different precursor ions. This type of convoluted data typically results in low sequence database search scores due to the vast number of mixed-source fragment ions, of which only a fraction originates from a specific precursor ion. Herein, we present a novel workflow that deconvolutes the data of chimeric MS/MS spectra, improving the protein search scores and sequence coverages in database searching and thus providing a more confident peptide and protein identification. Previously misidentified proteins or proteins with insignificant search scores can be correctly and significantly identified following the presented data acquisition and analysis workflow with search scores increasing by a factor of 3–4 for smaller precursor ions (peptides) and >6 for larger precursor ions such as intact ubiquitin and cytochrome C.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c03061</identifier><identifier>PMID: 38193749</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino acid sequence ; Biomolecules ; Cytochrome c ; Data acquisition ; Database searching ; Ions ; Mass spectrometry ; Mass spectroscopy ; Peptides ; Peptides - chemistry ; Precursors ; Proteins ; Proteins - analysis ; Proteomics ; Searching ; Spectra ; Structural analysis ; Tandem Mass Spectrometry - methods ; Technical Note ; Ubiquitin ; Workflow</subject><ispartof>Analytical chemistry (Washington), 2024-01, Vol.96 (3), p.985-990</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jan 23, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-6653dded02b185b4aab4a5ce4823c36ac083f7c4f7307d1ef2677e7bc66e21ed3</citedby><cites>FETCH-LOGICAL-a478t-6653dded02b185b4aab4a5ce4823c36ac083f7c4f7307d1ef2677e7bc66e21ed3</cites><orcidid>0009-0001-2652-9960 ; 0000-0002-8037-2511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c03061$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c03061$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38193749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adair, Lily R.</creatorcontrib><creatorcontrib>Jones, Ian</creatorcontrib><creatorcontrib>Cramer, Rainer</creatorcontrib><title>Utilizing Precursor Ion Connectivity of Different Charge States to Improve Peptide and Protein Identification in MS/MS Analysis</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Tandem mass spectrometry (MS/MS) has become a key method for the structural analysis of biomolecules such as peptides and proteins. A pervasive problem in MS/MS analyses, especially for top-down proteomics, is the occurrence of chimeric spectra, when two or more precursor ions are co-isolated and fragmented, thus leading to complex MS/MS spectra that are populated with fragment ions originating from different precursor ions. This type of convoluted data typically results in low sequence database search scores due to the vast number of mixed-source fragment ions, of which only a fraction originates from a specific precursor ion. Herein, we present a novel workflow that deconvolutes the data of chimeric MS/MS spectra, improving the protein search scores and sequence coverages in database searching and thus providing a more confident peptide and protein identification. Previously misidentified proteins or proteins with insignificant search scores can be correctly and significantly identified following the presented data acquisition and analysis workflow with search scores increasing by a factor of 3–4 for smaller precursor ions (peptides) and >6 for larger precursor ions such as intact ubiquitin and cytochrome C.</description><subject>Amino acid sequence</subject><subject>Biomolecules</subject><subject>Cytochrome c</subject><subject>Data acquisition</subject><subject>Database searching</subject><subject>Ions</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Precursors</subject><subject>Proteins</subject><subject>Proteins - analysis</subject><subject>Proteomics</subject><subject>Searching</subject><subject>Spectra</subject><subject>Structural analysis</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Technical Note</subject><subject>Ubiquitin</subject><subject>Workflow</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1uGyEUhUdVq8ZN-wZVhdRNN-NcYAbGqypy_ywlaiQ3a4SZOzbRDLjAWHI3efWQ2rHaLrpASPCdw7mconhLYUqB0Qtt4lQ73ZsNDlNugIOgz4oJrRmUomnY82ICALxkEuCseBXjHQClQMXL4ow3dMZlNZsU97fJ9vaXdWtyE9CMIfpAFt6RuXcOTbI7m_bEd-ST7ToM6BKZb3RYI1kmnTCS5Mli2Aa_Q3KD22RbJNq12cwntI4s2iyxnTU62eyaT66XF9dLcpmT76ONr4sXne4jvjnu58Xtl88_5t_Kq-9fF_PLq1JXskmlEDVvW2yBrWhTryqt86oNVg3jhgttoOGdNFUnOciWYseElChXRghkFFt-Xnw8-G7H1YCtyamC7tU22EGHvfLaqr9vnN2otd8pCg3MGBPZ4cPRIfifI8akBhsN9r126Meo2IyyOn-2rDL6_h_0zo8hT_ybagSVwCBT1YEywccYsDuloaAeK1a5YvVUsTpWnGXv_pzkJHrqNANwAB7lp4f_6_kAtzu4HA</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>Adair, Lily R.</creator><creator>Jones, Ian</creator><creator>Cramer, Rainer</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0001-2652-9960</orcidid><orcidid>https://orcid.org/0000-0002-8037-2511</orcidid></search><sort><creationdate>20240123</creationdate><title>Utilizing Precursor Ion Connectivity of Different Charge States to Improve Peptide and Protein Identification in MS/MS Analysis</title><author>Adair, Lily R. ; Jones, Ian ; Cramer, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-6653dded02b185b4aab4a5ce4823c36ac083f7c4f7307d1ef2677e7bc66e21ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acid sequence</topic><topic>Biomolecules</topic><topic>Cytochrome c</topic><topic>Data acquisition</topic><topic>Database searching</topic><topic>Ions</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Precursors</topic><topic>Proteins</topic><topic>Proteins - analysis</topic><topic>Proteomics</topic><topic>Searching</topic><topic>Spectra</topic><topic>Structural analysis</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Technical Note</topic><topic>Ubiquitin</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adair, Lily R.</creatorcontrib><creatorcontrib>Jones, Ian</creatorcontrib><creatorcontrib>Cramer, Rainer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adair, Lily R.</au><au>Jones, Ian</au><au>Cramer, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing Precursor Ion Connectivity of Different Charge States to Improve Peptide and Protein Identification in MS/MS Analysis</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2024-01-23</date><risdate>2024</risdate><volume>96</volume><issue>3</issue><spage>985</spage><epage>990</epage><pages>985-990</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Tandem mass spectrometry (MS/MS) has become a key method for the structural analysis of biomolecules such as peptides and proteins. A pervasive problem in MS/MS analyses, especially for top-down proteomics, is the occurrence of chimeric spectra, when two or more precursor ions are co-isolated and fragmented, thus leading to complex MS/MS spectra that are populated with fragment ions originating from different precursor ions. This type of convoluted data typically results in low sequence database search scores due to the vast number of mixed-source fragment ions, of which only a fraction originates from a specific precursor ion. Herein, we present a novel workflow that deconvolutes the data of chimeric MS/MS spectra, improving the protein search scores and sequence coverages in database searching and thus providing a more confident peptide and protein identification. Previously misidentified proteins or proteins with insignificant search scores can be correctly and significantly identified following the presented data acquisition and analysis workflow with search scores increasing by a factor of 3–4 for smaller precursor ions (peptides) and >6 for larger precursor ions such as intact ubiquitin and cytochrome C.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38193749</pmid><doi>10.1021/acs.analchem.3c03061</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0001-2652-9960</orcidid><orcidid>https://orcid.org/0000-0002-8037-2511</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2024-01, Vol.96 (3), p.985-990 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10809226 |
source | MEDLINE; ACS Publications |
subjects | Amino acid sequence Biomolecules Cytochrome c Data acquisition Database searching Ions Mass spectrometry Mass spectroscopy Peptides Peptides - chemistry Precursors Proteins Proteins - analysis Proteomics Searching Spectra Structural analysis Tandem Mass Spectrometry - methods Technical Note Ubiquitin Workflow |
title | Utilizing Precursor Ion Connectivity of Different Charge States to Improve Peptide and Protein Identification in MS/MS Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20Precursor%20Ion%20Connectivity%20of%20Different%20Charge%20States%20to%20Improve%20Peptide%20and%20Protein%20Identification%20in%20MS/MS%20Analysis&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Adair,%20Lily%20R.&rft.date=2024-01-23&rft.volume=96&rft.issue=3&rft.spage=985&rft.epage=990&rft.pages=985-990&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c03061&rft_dat=%3Cproquest_pubme%3E2918617020%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918617020&rft_id=info:pmid/38193749&rfr_iscdi=true |