Water-promoted selective photocatalytic methane oxidation for methanol production

Converting relatively inert methane into active chemical fuels such as methanol with high selectivity through an energy-saving strategy has remained a grand challenge. Photocatalytic technology consuming solar energy is an appealing alternative for methane reforming. However, the low efficiency and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2024-01, Vol.15 (4), p.155-151
Hauptverfasser: Zhou, Peng, Tang, Songtao, Ye, Zhengwei, Navid, Ishtiaque Ahmed, Xiao, Yixin, Sun, Kai, Mi, Zetian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 4
container_start_page 155
container_title Chemical science (Cambridge)
container_volume 15
creator Zhou, Peng
Tang, Songtao
Ye, Zhengwei
Navid, Ishtiaque Ahmed
Xiao, Yixin
Sun, Kai
Mi, Zetian
description Converting relatively inert methane into active chemical fuels such as methanol with high selectivity through an energy-saving strategy has remained a grand challenge. Photocatalytic technology consuming solar energy is an appealing alternative for methane reforming. However, the low efficiency and the undesirable formation of low-value products, such as carbon dioxide and ethane, limit the commercial application of photocatalytic technology. Herein, we find a facile and practical water-promoted pathway for photocatalytic methane reforming into methanol, enabling methanol production from methane and oxygen with a high selectivity (>93%) and production rate (21.4 μmol cm −2 h −1 or 45.5 mmol g −1 h −1 ) on metallic Ag nanoparticle-loaded InGaN nanowires (Ag/InGaN). The experimental XPS and theoretical PDOS analyses reveal that water molecules adsorbed on Ag nanoparticles (AgNPs) can promote the electron transfer from InGaN to AgNPs, which enables the formation of partial Ag species with a lower oxidation state in AgNPs. Through the in situ IR spectrum and the reaction pathway simulation studies, these newly formed Ag species induced by water adsorption were demonstrated to be responsible for the highly selective methanol production due to the effective formation of a C-O bond and the optimal desorption of the formed methanol from the surface indium site of the InGaN photocatalyst. This unique water promotion effect leads to a 55-fold higher catalytic rate and 9-fold higher selectivity for methanol production compared to photocatalytic methane reforming without water addition. This finding offers a new pathway for achieving clean solar fuels by photocatalysis-based methane reforming. Water molecules adsorbed on Ag nanoparticles (AgNPs) can promote the electron transfer from InGaN to AgNPs, which enables the formation of partial Ag species with a lower oxidation state in AgNPs for the highly selective methanol production.
doi_str_mv 10.1039/d3sc02567e
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10806830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929067757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-ab8eb114dd9b1659a0509dbe655a107c5fa30b1567cc4d1349be98bfe6d00bf63</originalsourceid><addsrcrecordid>eNpdkd1rFTEQxUNR2lL70vfKgi8irE42m2TzJHKtH1AQUfEx5GO2d8vu5jbJFvvfm3pvr9V5mWHmx2EOh5AzCq8pMPXGs-Sg4ULiATluoKW14Ew92c8NHJHTlK6hFGOUN_KQHLGukS1IcUy-_jQZY72JYQoZfZVwRJeHW6w265CDM9mMd3lw1YR5bWaswq_BmzyEuepD3G3DWBUBv7j7_TPytDdjwtNdPyE_Plx8X32qL798_Lx6d1k71nW5NrZDS2nrvbJUcGWAg_IWBeeGgnS8NwwsLcacaz1lrbKoOtuj8AC2F-yEvN3qbhY7oXc452hGvYnDZOKdDmbQ_17mYa2vwq2m0IHoGBSFlzuFGG4WTFlPQ3I4jsVnWJJuVKNASMllQV_8h16HJc7FX6GolLLtBCvUqy3lYkgpYr__hoK-T0u_Z99Wf9K6KPDzx__v0YdsCnC-BWJy--vfuNlv_-SbiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917774863</pqid></control><display><type>article</type><title>Water-promoted selective photocatalytic methane oxidation for methanol production</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Zhou, Peng ; Tang, Songtao ; Ye, Zhengwei ; Navid, Ishtiaque Ahmed ; Xiao, Yixin ; Sun, Kai ; Mi, Zetian</creator><creatorcontrib>Zhou, Peng ; Tang, Songtao ; Ye, Zhengwei ; Navid, Ishtiaque Ahmed ; Xiao, Yixin ; Sun, Kai ; Mi, Zetian</creatorcontrib><description>Converting relatively inert methane into active chemical fuels such as methanol with high selectivity through an energy-saving strategy has remained a grand challenge. Photocatalytic technology consuming solar energy is an appealing alternative for methane reforming. However, the low efficiency and the undesirable formation of low-value products, such as carbon dioxide and ethane, limit the commercial application of photocatalytic technology. Herein, we find a facile and practical water-promoted pathway for photocatalytic methane reforming into methanol, enabling methanol production from methane and oxygen with a high selectivity (&gt;93%) and production rate (21.4 μmol cm −2 h −1 or 45.5 mmol g −1 h −1 ) on metallic Ag nanoparticle-loaded InGaN nanowires (Ag/InGaN). The experimental XPS and theoretical PDOS analyses reveal that water molecules adsorbed on Ag nanoparticles (AgNPs) can promote the electron transfer from InGaN to AgNPs, which enables the formation of partial Ag species with a lower oxidation state in AgNPs. Through the in situ IR spectrum and the reaction pathway simulation studies, these newly formed Ag species induced by water adsorption were demonstrated to be responsible for the highly selective methanol production due to the effective formation of a C-O bond and the optimal desorption of the formed methanol from the surface indium site of the InGaN photocatalyst. This unique water promotion effect leads to a 55-fold higher catalytic rate and 9-fold higher selectivity for methanol production compared to photocatalytic methane reforming without water addition. This finding offers a new pathway for achieving clean solar fuels by photocatalysis-based methane reforming. Water molecules adsorbed on Ag nanoparticles (AgNPs) can promote the electron transfer from InGaN to AgNPs, which enables the formation of partial Ag species with a lower oxidation state in AgNPs for the highly selective methanol production.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc02567e</identifier><identifier>PMID: 38274076</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adsorbed water ; Carbon dioxide ; Chemical fuels ; Chemistry ; Electron transfer ; Ethane ; Indium gallium nitrides ; Methane ; Methanol ; Nanoparticles ; Nanowires ; Oxidation ; Photocatalysis ; Reforming ; Selectivity ; Silver ; Solar energy ; Valence ; Water chemistry ; X ray photoelectron spectroscopy</subject><ispartof>Chemical science (Cambridge), 2024-01, Vol.15 (4), p.155-151</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-ab8eb114dd9b1659a0509dbe655a107c5fa30b1567cc4d1349be98bfe6d00bf63</cites><orcidid>0000-0001-8034-8282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10806830/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10806830/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38274076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Tang, Songtao</creatorcontrib><creatorcontrib>Ye, Zhengwei</creatorcontrib><creatorcontrib>Navid, Ishtiaque Ahmed</creatorcontrib><creatorcontrib>Xiao, Yixin</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Mi, Zetian</creatorcontrib><title>Water-promoted selective photocatalytic methane oxidation for methanol production</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Converting relatively inert methane into active chemical fuels such as methanol with high selectivity through an energy-saving strategy has remained a grand challenge. Photocatalytic technology consuming solar energy is an appealing alternative for methane reforming. However, the low efficiency and the undesirable formation of low-value products, such as carbon dioxide and ethane, limit the commercial application of photocatalytic technology. Herein, we find a facile and practical water-promoted pathway for photocatalytic methane reforming into methanol, enabling methanol production from methane and oxygen with a high selectivity (&gt;93%) and production rate (21.4 μmol cm −2 h −1 or 45.5 mmol g −1 h −1 ) on metallic Ag nanoparticle-loaded InGaN nanowires (Ag/InGaN). The experimental XPS and theoretical PDOS analyses reveal that water molecules adsorbed on Ag nanoparticles (AgNPs) can promote the electron transfer from InGaN to AgNPs, which enables the formation of partial Ag species with a lower oxidation state in AgNPs. Through the in situ IR spectrum and the reaction pathway simulation studies, these newly formed Ag species induced by water adsorption were demonstrated to be responsible for the highly selective methanol production due to the effective formation of a C-O bond and the optimal desorption of the formed methanol from the surface indium site of the InGaN photocatalyst. This unique water promotion effect leads to a 55-fold higher catalytic rate and 9-fold higher selectivity for methanol production compared to photocatalytic methane reforming without water addition. This finding offers a new pathway for achieving clean solar fuels by photocatalysis-based methane reforming. Water molecules adsorbed on Ag nanoparticles (AgNPs) can promote the electron transfer from InGaN to AgNPs, which enables the formation of partial Ag species with a lower oxidation state in AgNPs for the highly selective methanol production.</description><subject>Adsorbed water</subject><subject>Carbon dioxide</subject><subject>Chemical fuels</subject><subject>Chemistry</subject><subject>Electron transfer</subject><subject>Ethane</subject><subject>Indium gallium nitrides</subject><subject>Methane</subject><subject>Methanol</subject><subject>Nanoparticles</subject><subject>Nanowires</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Reforming</subject><subject>Selectivity</subject><subject>Silver</subject><subject>Solar energy</subject><subject>Valence</subject><subject>Water chemistry</subject><subject>X ray photoelectron spectroscopy</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkd1rFTEQxUNR2lL70vfKgi8irE42m2TzJHKtH1AQUfEx5GO2d8vu5jbJFvvfm3pvr9V5mWHmx2EOh5AzCq8pMPXGs-Sg4ULiATluoKW14Ew92c8NHJHTlK6hFGOUN_KQHLGukS1IcUy-_jQZY72JYQoZfZVwRJeHW6w265CDM9mMd3lw1YR5bWaswq_BmzyEuepD3G3DWBUBv7j7_TPytDdjwtNdPyE_Plx8X32qL798_Lx6d1k71nW5NrZDS2nrvbJUcGWAg_IWBeeGgnS8NwwsLcacaz1lrbKoOtuj8AC2F-yEvN3qbhY7oXc452hGvYnDZOKdDmbQ_17mYa2vwq2m0IHoGBSFlzuFGG4WTFlPQ3I4jsVnWJJuVKNASMllQV_8h16HJc7FX6GolLLtBCvUqy3lYkgpYr__hoK-T0u_Z99Wf9K6KPDzx__v0YdsCnC-BWJy--vfuNlv_-SbiQ</recordid><startdate>20240124</startdate><enddate>20240124</enddate><creator>Zhou, Peng</creator><creator>Tang, Songtao</creator><creator>Ye, Zhengwei</creator><creator>Navid, Ishtiaque Ahmed</creator><creator>Xiao, Yixin</creator><creator>Sun, Kai</creator><creator>Mi, Zetian</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8034-8282</orcidid></search><sort><creationdate>20240124</creationdate><title>Water-promoted selective photocatalytic methane oxidation for methanol production</title><author>Zhou, Peng ; Tang, Songtao ; Ye, Zhengwei ; Navid, Ishtiaque Ahmed ; Xiao, Yixin ; Sun, Kai ; Mi, Zetian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-ab8eb114dd9b1659a0509dbe655a107c5fa30b1567cc4d1349be98bfe6d00bf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorbed water</topic><topic>Carbon dioxide</topic><topic>Chemical fuels</topic><topic>Chemistry</topic><topic>Electron transfer</topic><topic>Ethane</topic><topic>Indium gallium nitrides</topic><topic>Methane</topic><topic>Methanol</topic><topic>Nanoparticles</topic><topic>Nanowires</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Reforming</topic><topic>Selectivity</topic><topic>Silver</topic><topic>Solar energy</topic><topic>Valence</topic><topic>Water chemistry</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Tang, Songtao</creatorcontrib><creatorcontrib>Ye, Zhengwei</creatorcontrib><creatorcontrib>Navid, Ishtiaque Ahmed</creatorcontrib><creatorcontrib>Xiao, Yixin</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Mi, Zetian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Peng</au><au>Tang, Songtao</au><au>Ye, Zhengwei</au><au>Navid, Ishtiaque Ahmed</au><au>Xiao, Yixin</au><au>Sun, Kai</au><au>Mi, Zetian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water-promoted selective photocatalytic methane oxidation for methanol production</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-01-24</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>155</spage><epage>151</epage><pages>155-151</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Converting relatively inert methane into active chemical fuels such as methanol with high selectivity through an energy-saving strategy has remained a grand challenge. Photocatalytic technology consuming solar energy is an appealing alternative for methane reforming. However, the low efficiency and the undesirable formation of low-value products, such as carbon dioxide and ethane, limit the commercial application of photocatalytic technology. Herein, we find a facile and practical water-promoted pathway for photocatalytic methane reforming into methanol, enabling methanol production from methane and oxygen with a high selectivity (&gt;93%) and production rate (21.4 μmol cm −2 h −1 or 45.5 mmol g −1 h −1 ) on metallic Ag nanoparticle-loaded InGaN nanowires (Ag/InGaN). The experimental XPS and theoretical PDOS analyses reveal that water molecules adsorbed on Ag nanoparticles (AgNPs) can promote the electron transfer from InGaN to AgNPs, which enables the formation of partial Ag species with a lower oxidation state in AgNPs. Through the in situ IR spectrum and the reaction pathway simulation studies, these newly formed Ag species induced by water adsorption were demonstrated to be responsible for the highly selective methanol production due to the effective formation of a C-O bond and the optimal desorption of the formed methanol from the surface indium site of the InGaN photocatalyst. This unique water promotion effect leads to a 55-fold higher catalytic rate and 9-fold higher selectivity for methanol production compared to photocatalytic methane reforming without water addition. This finding offers a new pathway for achieving clean solar fuels by photocatalysis-based methane reforming. Water molecules adsorbed on Ag nanoparticles (AgNPs) can promote the electron transfer from InGaN to AgNPs, which enables the formation of partial Ag species with a lower oxidation state in AgNPs for the highly selective methanol production.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38274076</pmid><doi>10.1039/d3sc02567e</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8034-8282</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2024-01, Vol.15 (4), p.155-151
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10806830
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Adsorbed water
Carbon dioxide
Chemical fuels
Chemistry
Electron transfer
Ethane
Indium gallium nitrides
Methane
Methanol
Nanoparticles
Nanowires
Oxidation
Photocatalysis
Reforming
Selectivity
Silver
Solar energy
Valence
Water chemistry
X ray photoelectron spectroscopy
title Water-promoted selective photocatalytic methane oxidation for methanol production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water-promoted%20selective%20photocatalytic%20methane%20oxidation%20for%20methanol%20production&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Zhou,%20Peng&rft.date=2024-01-24&rft.volume=15&rft.issue=4&rft.spage=155&rft.epage=151&rft.pages=155-151&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc02567e&rft_dat=%3Cproquest_pubme%3E2929067757%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917774863&rft_id=info:pmid/38274076&rfr_iscdi=true