Sm complex assembly and 5' cap trimethylation promote selective processing of snRNAs by the 3' exonuclease TOE1
Competing exonucleases that promote 3' end maturation or degradation direct quality control of small non-coding RNAs, but how these enzymes distinguish normal from aberrant RNAs is poorly understood. The Pontocerebellar Hypoplasia 7 (PCH7)-associated 3' exonuclease TOE1 promotes maturation...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-01, Vol.121 (3), p.e2315259121 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e2315259121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Ma, Tiantai Xiong, Erica S Lardelli, Rea M Lykke-Andersen, Jens |
description | Competing exonucleases that promote 3' end maturation or degradation direct quality control of small non-coding RNAs, but how these enzymes distinguish normal from aberrant RNAs is poorly understood. The Pontocerebellar Hypoplasia 7 (PCH7)-associated 3' exonuclease TOE1 promotes maturation of canonical small nuclear RNAs (snRNAs). Here, we demonstrate that TOE1 achieves specificity toward canonical snRNAs through their Sm complex assembly and cap trimethylation, two features that distinguish snRNAs undergoing correct biogenesis from other small non-coding RNAs. Indeed, disruption of Sm complex assembly via snRNA mutations or protein depletions obstructs snRNA processing by TOE1, and in vitro snRNA processing by TOE1 is stimulated by a trimethylated cap. An unstable snRNA variant that normally fails to undergo maturation becomes fully processed by TOE1 when its degenerate Sm binding motif is converted into a canonical one. Our findings uncover the molecular basis for how TOE1 distinguishes snRNAs from other small non-coding RNAs and explain how TOE1 promotes maturation specifically of canonical snRNAs undergoing proper processing. |
doi_str_mv | 10.1073/pnas.2315259121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10801842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916709750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2911-bda253c3b4359977e920fddf42098c14a45f53f956d334e38ac892779f1694d13</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxS3UqmyhZ27IUg_0Ehh_beITQgjaSggkPs6W40zYIMcOcYLY_75eQaHlNNLMb57mzSNkj8Ehg1IcDcGmQy6Y4kozzrbIgoFmxVJq-EQWALwsKsnlNvma0gMAaFXBF7ItKqallHpB4k1PXewHj8_UpoR97dfUhoaqA-rsQKex63Farb2duhjoMMY-TkgTenRT94SbjsOUunBPY0tTuL48SbRe02mFVBxQfI5hdh5tQnp7dcZ2yefW-oTfXusOuTs_uz39VVxc_fx9enJROK4ZK-rGciWcqKVQWpclag5t07SSg64ck1aqVolWq2UjhERRWVdpXpa6ZUstGyZ2yPGL7jDXPTYOwzRab4Zsx45rE21n_p-EbmXu45NhUAHLP8sKP14Vxvg4Y5pM3yWH3tuAcU4m3ykgg1pl9PsH9CHOY8j-NtSyBF0qyNTRC-XGmNKI7ds1DMwmTbNJ07ynmTf2_zXxxv-NT_wBOfKa9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916709750</pqid></control><display><type>article</type><title>Sm complex assembly and 5' cap trimethylation promote selective processing of snRNAs by the 3' exonuclease TOE1</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ma, Tiantai ; Xiong, Erica S ; Lardelli, Rea M ; Lykke-Andersen, Jens</creator><creatorcontrib>Ma, Tiantai ; Xiong, Erica S ; Lardelli, Rea M ; Lykke-Andersen, Jens</creatorcontrib><description>Competing exonucleases that promote 3' end maturation or degradation direct quality control of small non-coding RNAs, but how these enzymes distinguish normal from aberrant RNAs is poorly understood. The Pontocerebellar Hypoplasia 7 (PCH7)-associated 3' exonuclease TOE1 promotes maturation of canonical small nuclear RNAs (snRNAs). Here, we demonstrate that TOE1 achieves specificity toward canonical snRNAs through their Sm complex assembly and cap trimethylation, two features that distinguish snRNAs undergoing correct biogenesis from other small non-coding RNAs. Indeed, disruption of Sm complex assembly via snRNA mutations or protein depletions obstructs snRNA processing by TOE1, and in vitro snRNA processing by TOE1 is stimulated by a trimethylated cap. An unstable snRNA variant that normally fails to undergo maturation becomes fully processed by TOE1 when its degenerate Sm binding motif is converted into a canonical one. Our findings uncover the molecular basis for how TOE1 distinguishes snRNAs from other small non-coding RNAs and explain how TOE1 promotes maturation specifically of canonical snRNAs undergoing proper processing.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2315259121</identifier><identifier>PMID: 38194449</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Assembly ; Biological Sciences ; Coding ; Evolution ; Exonuclease ; Exonucleases ; Hypoplasia ; Maturation ; Methylation ; Mutation ; Non-coding RNA ; Quality Control ; RNA ; RNA, Small Nuclear - genetics ; snRNA</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-01, Vol.121 (3), p.e2315259121</ispartof><rights>Copyright National Academy of Sciences Jan 16, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2911-bda253c3b4359977e920fddf42098c14a45f53f956d334e38ac892779f1694d13</cites><orcidid>0000-0002-7150-7808 ; 0009-0000-8023-5720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801842/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801842/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38194449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Tiantai</creatorcontrib><creatorcontrib>Xiong, Erica S</creatorcontrib><creatorcontrib>Lardelli, Rea M</creatorcontrib><creatorcontrib>Lykke-Andersen, Jens</creatorcontrib><title>Sm complex assembly and 5' cap trimethylation promote selective processing of snRNAs by the 3' exonuclease TOE1</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Competing exonucleases that promote 3' end maturation or degradation direct quality control of small non-coding RNAs, but how these enzymes distinguish normal from aberrant RNAs is poorly understood. The Pontocerebellar Hypoplasia 7 (PCH7)-associated 3' exonuclease TOE1 promotes maturation of canonical small nuclear RNAs (snRNAs). Here, we demonstrate that TOE1 achieves specificity toward canonical snRNAs through their Sm complex assembly and cap trimethylation, two features that distinguish snRNAs undergoing correct biogenesis from other small non-coding RNAs. Indeed, disruption of Sm complex assembly via snRNA mutations or protein depletions obstructs snRNA processing by TOE1, and in vitro snRNA processing by TOE1 is stimulated by a trimethylated cap. An unstable snRNA variant that normally fails to undergo maturation becomes fully processed by TOE1 when its degenerate Sm binding motif is converted into a canonical one. Our findings uncover the molecular basis for how TOE1 distinguishes snRNAs from other small non-coding RNAs and explain how TOE1 promotes maturation specifically of canonical snRNAs undergoing proper processing.</description><subject>Assembly</subject><subject>Biological Sciences</subject><subject>Coding</subject><subject>Evolution</subject><subject>Exonuclease</subject><subject>Exonucleases</subject><subject>Hypoplasia</subject><subject>Maturation</subject><subject>Methylation</subject><subject>Mutation</subject><subject>Non-coding RNA</subject><subject>Quality Control</subject><subject>RNA</subject><subject>RNA, Small Nuclear - genetics</subject><subject>snRNA</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxS3UqmyhZ27IUg_0Ehh_beITQgjaSggkPs6W40zYIMcOcYLY_75eQaHlNNLMb57mzSNkj8Ehg1IcDcGmQy6Y4kozzrbIgoFmxVJq-EQWALwsKsnlNvma0gMAaFXBF7ItKqallHpB4k1PXewHj8_UpoR97dfUhoaqA-rsQKex63Farb2duhjoMMY-TkgTenRT94SbjsOUunBPY0tTuL48SbRe02mFVBxQfI5hdh5tQnp7dcZ2yefW-oTfXusOuTs_uz39VVxc_fx9enJROK4ZK-rGciWcqKVQWpclag5t07SSg64ck1aqVolWq2UjhERRWVdpXpa6ZUstGyZ2yPGL7jDXPTYOwzRab4Zsx45rE21n_p-EbmXu45NhUAHLP8sKP14Vxvg4Y5pM3yWH3tuAcU4m3ykgg1pl9PsH9CHOY8j-NtSyBF0qyNTRC-XGmNKI7ds1DMwmTbNJ07ynmTf2_zXxxv-NT_wBOfKa9A</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>Ma, Tiantai</creator><creator>Xiong, Erica S</creator><creator>Lardelli, Rea M</creator><creator>Lykke-Andersen, Jens</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7150-7808</orcidid><orcidid>https://orcid.org/0009-0000-8023-5720</orcidid></search><sort><creationdate>20240116</creationdate><title>Sm complex assembly and 5' cap trimethylation promote selective processing of snRNAs by the 3' exonuclease TOE1</title><author>Ma, Tiantai ; Xiong, Erica S ; Lardelli, Rea M ; Lykke-Andersen, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2911-bda253c3b4359977e920fddf42098c14a45f53f956d334e38ac892779f1694d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assembly</topic><topic>Biological Sciences</topic><topic>Coding</topic><topic>Evolution</topic><topic>Exonuclease</topic><topic>Exonucleases</topic><topic>Hypoplasia</topic><topic>Maturation</topic><topic>Methylation</topic><topic>Mutation</topic><topic>Non-coding RNA</topic><topic>Quality Control</topic><topic>RNA</topic><topic>RNA, Small Nuclear - genetics</topic><topic>snRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Tiantai</creatorcontrib><creatorcontrib>Xiong, Erica S</creatorcontrib><creatorcontrib>Lardelli, Rea M</creatorcontrib><creatorcontrib>Lykke-Andersen, Jens</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Tiantai</au><au>Xiong, Erica S</au><au>Lardelli, Rea M</au><au>Lykke-Andersen, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sm complex assembly and 5' cap trimethylation promote selective processing of snRNAs by the 3' exonuclease TOE1</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-01-16</date><risdate>2024</risdate><volume>121</volume><issue>3</issue><spage>e2315259121</spage><pages>e2315259121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Competing exonucleases that promote 3' end maturation or degradation direct quality control of small non-coding RNAs, but how these enzymes distinguish normal from aberrant RNAs is poorly understood. The Pontocerebellar Hypoplasia 7 (PCH7)-associated 3' exonuclease TOE1 promotes maturation of canonical small nuclear RNAs (snRNAs). Here, we demonstrate that TOE1 achieves specificity toward canonical snRNAs through their Sm complex assembly and cap trimethylation, two features that distinguish snRNAs undergoing correct biogenesis from other small non-coding RNAs. Indeed, disruption of Sm complex assembly via snRNA mutations or protein depletions obstructs snRNA processing by TOE1, and in vitro snRNA processing by TOE1 is stimulated by a trimethylated cap. An unstable snRNA variant that normally fails to undergo maturation becomes fully processed by TOE1 when its degenerate Sm binding motif is converted into a canonical one. Our findings uncover the molecular basis for how TOE1 distinguishes snRNAs from other small non-coding RNAs and explain how TOE1 promotes maturation specifically of canonical snRNAs undergoing proper processing.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38194449</pmid><doi>10.1073/pnas.2315259121</doi><orcidid>https://orcid.org/0000-0002-7150-7808</orcidid><orcidid>https://orcid.org/0009-0000-8023-5720</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-01, Vol.121 (3), p.e2315259121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10801842 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Assembly Biological Sciences Coding Evolution Exonuclease Exonucleases Hypoplasia Maturation Methylation Mutation Non-coding RNA Quality Control RNA RNA, Small Nuclear - genetics snRNA |
title | Sm complex assembly and 5' cap trimethylation promote selective processing of snRNAs by the 3' exonuclease TOE1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sm%20complex%20assembly%20and%205'%20cap%20trimethylation%20promote%20selective%20processing%20of%20snRNAs%20by%20the%203'%20exonuclease%20TOE1&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ma,%20Tiantai&rft.date=2024-01-16&rft.volume=121&rft.issue=3&rft.spage=e2315259121&rft.pages=e2315259121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2315259121&rft_dat=%3Cproquest_pubme%3E2916709750%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916709750&rft_id=info:pmid/38194449&rfr_iscdi=true |