Predicting success in Cu-catalyzed C-N coupling reactions using data science
Data science is assuming a pivotal role in guiding reaction optimization and streamlining experimental workloads in the evolving landscape of synthetic chemistry. A discipline-wide goal is the development of workflows that integrate computational chemistry and data science tools with high-throughput...
Gespeichert in:
Veröffentlicht in: | Science advances 2024-01, Vol.10 (3), p.eadn3478-eadn3478 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eadn3478 |
---|---|
container_issue | 3 |
container_start_page | eadn3478 |
container_title | Science advances |
container_volume | 10 |
creator | Samha, Mohammad H Karas, Lucas J Vogt, David B Odogwu, Emmanuel C Elward, Jennifer Crawford, Jennifer M Steves, Janelle E Sigman, Matthew S |
description | Data science is assuming a pivotal role in guiding reaction optimization and streamlining experimental workloads in the evolving landscape of synthetic chemistry. A discipline-wide goal is the development of workflows that integrate computational chemistry and data science tools with high-throughput experimentation as it provides experimentalists the ability to maximize success in expensive synthetic campaigns. Here, we report an end-to-end data-driven process to effectively predict how structural features of coupling partners and ligands affect Cu-catalyzed C-N coupling reactions. The established workflow underscores the limitations posed by substrates and ligands while also providing a systematic ligand prediction tool that uses probability to assess when a ligand will be successful. This platform is strategically designed to confront the intrinsic unpredictability frequently encountered in synthetic reaction deployment. |
doi_str_mv | 10.1126/sciadv.adn3478 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10793951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916408678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-7414b837cef3858556cb9ecd253c8279d5237fe92d5ec16e919b8ea61bb42a273</originalsourceid><addsrcrecordid>eNpVkb1PwzAQxS0EolXpyogysqTEdvw1IRTxJVXAALPl2JdilCbFTiqVv55ULVWZfNb97t3TPYQucTbDmPCbaL1x65lxDc2FPEFjQgVLCcvl6VE9QtMYv7IswznnDKtzNKKSUIK5GqP5WwDnbeebRRJ7ayHGxDdJ0afWdKbe_IBLivQlsW2_qrdQADPQbROTPm7_bsCSwQg0Fi7QWWXqCNP9O0EfD_fvxVM6f318Lu7mqaUKd6nIcV5KKixUVDLJGLelAusIo1YSoRwbvFegiGNgMQeFVSnBcFyWOTFE0Am63emu-nIJzkLTBVPrVfBLEza6NV7_7zT-Uy_atcaZUFQxPChc7xVC-91D7PTSRwt1bRpo-6iJwjzPJBdyQGc71IY2xgDVYQ_O9DYGvYtB72MYBq6O3R3wv6PTXyVYhkc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916408678</pqid></control><display><type>article</type><title>Predicting success in Cu-catalyzed C-N coupling reactions using data science</title><source>Free E-Journal (出版社公開部分のみ)</source><source>PubMed Central</source><source>DOAJ: Directory of Open Access Journals</source><creator>Samha, Mohammad H ; Karas, Lucas J ; Vogt, David B ; Odogwu, Emmanuel C ; Elward, Jennifer ; Crawford, Jennifer M ; Steves, Janelle E ; Sigman, Matthew S</creator><creatorcontrib>Samha, Mohammad H ; Karas, Lucas J ; Vogt, David B ; Odogwu, Emmanuel C ; Elward, Jennifer ; Crawford, Jennifer M ; Steves, Janelle E ; Sigman, Matthew S</creatorcontrib><description>Data science is assuming a pivotal role in guiding reaction optimization and streamlining experimental workloads in the evolving landscape of synthetic chemistry. A discipline-wide goal is the development of workflows that integrate computational chemistry and data science tools with high-throughput experimentation as it provides experimentalists the ability to maximize success in expensive synthetic campaigns. Here, we report an end-to-end data-driven process to effectively predict how structural features of coupling partners and ligands affect Cu-catalyzed C-N coupling reactions. The established workflow underscores the limitations posed by substrates and ligands while also providing a systematic ligand prediction tool that uses probability to assess when a ligand will be successful. This platform is strategically designed to confront the intrinsic unpredictability frequently encountered in synthetic reaction deployment.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adn3478</identifier><identifier>PMID: 38232169</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Chemistry ; Physical and Materials Sciences ; Physical Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2024-01, Vol.10 (3), p.eadn3478-eadn3478</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-7414b837cef3858556cb9ecd253c8279d5237fe92d5ec16e919b8ea61bb42a273</citedby><cites>FETCH-LOGICAL-c391t-7414b837cef3858556cb9ecd253c8279d5237fe92d5ec16e919b8ea61bb42a273</cites><orcidid>0000-0002-5746-8830 ; 0009-0001-0414-9879 ; 0000-0002-3786-3411 ; 0000-0003-2936-4038 ; 0000-0002-0664-7556 ; 0000-0001-7970-119X ; 0000-0002-1255-0582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793951/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793951/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38232169$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samha, Mohammad H</creatorcontrib><creatorcontrib>Karas, Lucas J</creatorcontrib><creatorcontrib>Vogt, David B</creatorcontrib><creatorcontrib>Odogwu, Emmanuel C</creatorcontrib><creatorcontrib>Elward, Jennifer</creatorcontrib><creatorcontrib>Crawford, Jennifer M</creatorcontrib><creatorcontrib>Steves, Janelle E</creatorcontrib><creatorcontrib>Sigman, Matthew S</creatorcontrib><title>Predicting success in Cu-catalyzed C-N coupling reactions using data science</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Data science is assuming a pivotal role in guiding reaction optimization and streamlining experimental workloads in the evolving landscape of synthetic chemistry. A discipline-wide goal is the development of workflows that integrate computational chemistry and data science tools with high-throughput experimentation as it provides experimentalists the ability to maximize success in expensive synthetic campaigns. Here, we report an end-to-end data-driven process to effectively predict how structural features of coupling partners and ligands affect Cu-catalyzed C-N coupling reactions. The established workflow underscores the limitations posed by substrates and ligands while also providing a systematic ligand prediction tool that uses probability to assess when a ligand will be successful. This platform is strategically designed to confront the intrinsic unpredictability frequently encountered in synthetic reaction deployment.</description><subject>Chemistry</subject><subject>Physical and Materials Sciences</subject><subject>Physical Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkb1PwzAQxS0EolXpyogysqTEdvw1IRTxJVXAALPl2JdilCbFTiqVv55ULVWZfNb97t3TPYQucTbDmPCbaL1x65lxDc2FPEFjQgVLCcvl6VE9QtMYv7IswznnDKtzNKKSUIK5GqP5WwDnbeebRRJ7ayHGxDdJ0afWdKbe_IBLivQlsW2_qrdQADPQbROTPm7_bsCSwQg0Fi7QWWXqCNP9O0EfD_fvxVM6f318Lu7mqaUKd6nIcV5KKixUVDLJGLelAusIo1YSoRwbvFegiGNgMQeFVSnBcFyWOTFE0Am63emu-nIJzkLTBVPrVfBLEza6NV7_7zT-Uy_atcaZUFQxPChc7xVC-91D7PTSRwt1bRpo-6iJwjzPJBdyQGc71IY2xgDVYQ_O9DYGvYtB72MYBq6O3R3wv6PTXyVYhkc</recordid><startdate>20240119</startdate><enddate>20240119</enddate><creator>Samha, Mohammad H</creator><creator>Karas, Lucas J</creator><creator>Vogt, David B</creator><creator>Odogwu, Emmanuel C</creator><creator>Elward, Jennifer</creator><creator>Crawford, Jennifer M</creator><creator>Steves, Janelle E</creator><creator>Sigman, Matthew S</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5746-8830</orcidid><orcidid>https://orcid.org/0009-0001-0414-9879</orcidid><orcidid>https://orcid.org/0000-0002-3786-3411</orcidid><orcidid>https://orcid.org/0000-0003-2936-4038</orcidid><orcidid>https://orcid.org/0000-0002-0664-7556</orcidid><orcidid>https://orcid.org/0000-0001-7970-119X</orcidid><orcidid>https://orcid.org/0000-0002-1255-0582</orcidid></search><sort><creationdate>20240119</creationdate><title>Predicting success in Cu-catalyzed C-N coupling reactions using data science</title><author>Samha, Mohammad H ; Karas, Lucas J ; Vogt, David B ; Odogwu, Emmanuel C ; Elward, Jennifer ; Crawford, Jennifer M ; Steves, Janelle E ; Sigman, Matthew S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-7414b837cef3858556cb9ecd253c8279d5237fe92d5ec16e919b8ea61bb42a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><topic>Physical and Materials Sciences</topic><topic>Physical Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samha, Mohammad H</creatorcontrib><creatorcontrib>Karas, Lucas J</creatorcontrib><creatorcontrib>Vogt, David B</creatorcontrib><creatorcontrib>Odogwu, Emmanuel C</creatorcontrib><creatorcontrib>Elward, Jennifer</creatorcontrib><creatorcontrib>Crawford, Jennifer M</creatorcontrib><creatorcontrib>Steves, Janelle E</creatorcontrib><creatorcontrib>Sigman, Matthew S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samha, Mohammad H</au><au>Karas, Lucas J</au><au>Vogt, David B</au><au>Odogwu, Emmanuel C</au><au>Elward, Jennifer</au><au>Crawford, Jennifer M</au><au>Steves, Janelle E</au><au>Sigman, Matthew S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting success in Cu-catalyzed C-N coupling reactions using data science</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-01-19</date><risdate>2024</risdate><volume>10</volume><issue>3</issue><spage>eadn3478</spage><epage>eadn3478</epage><pages>eadn3478-eadn3478</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Data science is assuming a pivotal role in guiding reaction optimization and streamlining experimental workloads in the evolving landscape of synthetic chemistry. A discipline-wide goal is the development of workflows that integrate computational chemistry and data science tools with high-throughput experimentation as it provides experimentalists the ability to maximize success in expensive synthetic campaigns. Here, we report an end-to-end data-driven process to effectively predict how structural features of coupling partners and ligands affect Cu-catalyzed C-N coupling reactions. The established workflow underscores the limitations posed by substrates and ligands while also providing a systematic ligand prediction tool that uses probability to assess when a ligand will be successful. This platform is strategically designed to confront the intrinsic unpredictability frequently encountered in synthetic reaction deployment.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>38232169</pmid><doi>10.1126/sciadv.adn3478</doi><orcidid>https://orcid.org/0000-0002-5746-8830</orcidid><orcidid>https://orcid.org/0009-0001-0414-9879</orcidid><orcidid>https://orcid.org/0000-0002-3786-3411</orcidid><orcidid>https://orcid.org/0000-0003-2936-4038</orcidid><orcidid>https://orcid.org/0000-0002-0664-7556</orcidid><orcidid>https://orcid.org/0000-0001-7970-119X</orcidid><orcidid>https://orcid.org/0000-0002-1255-0582</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2024-01, Vol.10 (3), p.eadn3478-eadn3478 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10793951 |
source | Free E-Journal (出版社公開部分のみ); PubMed Central; DOAJ: Directory of Open Access Journals |
subjects | Chemistry Physical and Materials Sciences Physical Sciences SciAdv r-articles |
title | Predicting success in Cu-catalyzed C-N coupling reactions using data science |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20success%20in%20Cu-catalyzed%20C-N%20coupling%20reactions%20using%20data%20science&rft.jtitle=Science%20advances&rft.au=Samha,%20Mohammad%20H&rft.date=2024-01-19&rft.volume=10&rft.issue=3&rft.spage=eadn3478&rft.epage=eadn3478&rft.pages=eadn3478-eadn3478&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adn3478&rft_dat=%3Cproquest_pubme%3E2916408678%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916408678&rft_id=info:pmid/38232169&rfr_iscdi=true |