Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks
Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with dive...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2023-12, Vol.35 (23), p.10086-10098 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10098 |
---|---|
container_issue | 23 |
container_start_page | 10086 |
container_title | Chemistry of materials |
container_volume | 35 |
creator | Halder, Arjun Bain, David C Pitt, Tristan A Shi, Zixiao Oktawiec, Julia Lee, Jung-Hoon Tsangari, Stavrini Ng, Marcus Fuentes-Rivera, José J Forse, Alexander C Runčevski, Tomče Muller, David A Musser, Andrew J Milner, Phillip J |
description | Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M
(dobdc) (M = Mg, Mn, Ni; dobdc
= 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M
(dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H
dobdc and Mg
(dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H
dobdc
linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M
(dobdc) phases by heating in
-dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials. |
doi_str_mv | 10.1021/acs.chemmater.3c02121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10788154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915572079</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1124-d177a8639c0119f899d4c5610ae348ac7f827e67ed7766121dfe7794dcde31bf3</originalsourceid><addsrcrecordid>eNpVkElPwzAQhS0EgrL8BFCOXFJsZ7F9Qqi0gFglyjkyzqQxJHawExASPx5XlO000rw335sZhPYJHhNMyZFUfqxqaFvZgxsnKvQoWUMjklEcZxjTdTTCXLA4ZVm-hba9f8KYhFG-ibYSTmkmUj5CH5faQK9VNHey67RZRLaK7mrb22Zog-QVmD6aOdnCm3XPPjod3NJ1rhd1PLFmKTvZa2ui-3fT1-C1XyJurImnrfZev0J0Db1s4lu3kCYk_cJ20UYlGw97q7qDHmbT-eQ8vro9u5icXMUdITSNS8KY5HkiVDhAVFyIMlVZTrCEJOVSsYpTBjmDkrE8D28oK2BMpKUqISGPVbKDjr-43fDYQvm1c1N0TrfSvRdW6uK_YnRdLOxrQTDjnGRpIByuCM6-DOD7ItymoGmkATv4ggqSZYxiJoL14G_YT8r3z5NPbiyKaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915572079</pqid></control><display><type>article</type><title>Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks</title><source>American Chemical Society Journals</source><creator>Halder, Arjun ; Bain, David C ; Pitt, Tristan A ; Shi, Zixiao ; Oktawiec, Julia ; Lee, Jung-Hoon ; Tsangari, Stavrini ; Ng, Marcus ; Fuentes-Rivera, José J ; Forse, Alexander C ; Runčevski, Tomče ; Muller, David A ; Musser, Andrew J ; Milner, Phillip J</creator><creatorcontrib>Halder, Arjun ; Bain, David C ; Pitt, Tristan A ; Shi, Zixiao ; Oktawiec, Julia ; Lee, Jung-Hoon ; Tsangari, Stavrini ; Ng, Marcus ; Fuentes-Rivera, José J ; Forse, Alexander C ; Runčevski, Tomče ; Muller, David A ; Musser, Andrew J ; Milner, Phillip J</creatorcontrib><description>Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M
(dobdc) (M = Mg, Mn, Ni; dobdc
= 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M
(dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H
dobdc and Mg
(dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H
dobdc
linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M
(dobdc) phases by heating in
-dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.3c02121</identifier><identifier>PMID: 38225948</identifier><language>eng</language><publisher>United States</publisher><ispartof>Chemistry of materials, 2023-12, Vol.35 (23), p.10086-10098</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38225948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Halder, Arjun</creatorcontrib><creatorcontrib>Bain, David C</creatorcontrib><creatorcontrib>Pitt, Tristan A</creatorcontrib><creatorcontrib>Shi, Zixiao</creatorcontrib><creatorcontrib>Oktawiec, Julia</creatorcontrib><creatorcontrib>Lee, Jung-Hoon</creatorcontrib><creatorcontrib>Tsangari, Stavrini</creatorcontrib><creatorcontrib>Ng, Marcus</creatorcontrib><creatorcontrib>Fuentes-Rivera, José J</creatorcontrib><creatorcontrib>Forse, Alexander C</creatorcontrib><creatorcontrib>Runčevski, Tomče</creatorcontrib><creatorcontrib>Muller, David A</creatorcontrib><creatorcontrib>Musser, Andrew J</creatorcontrib><creatorcontrib>Milner, Phillip J</creatorcontrib><title>Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks</title><title>Chemistry of materials</title><addtitle>Chem Mater</addtitle><description>Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M
(dobdc) (M = Mg, Mn, Ni; dobdc
= 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M
(dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H
dobdc and Mg
(dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H
dobdc
linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M
(dobdc) phases by heating in
-dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkElPwzAQhS0EgrL8BFCOXFJsZ7F9Qqi0gFglyjkyzqQxJHawExASPx5XlO000rw335sZhPYJHhNMyZFUfqxqaFvZgxsnKvQoWUMjklEcZxjTdTTCXLA4ZVm-hba9f8KYhFG-ibYSTmkmUj5CH5faQK9VNHey67RZRLaK7mrb22Zog-QVmD6aOdnCm3XPPjod3NJ1rhd1PLFmKTvZa2ui-3fT1-C1XyJurImnrfZev0J0Db1s4lu3kCYk_cJ20UYlGw97q7qDHmbT-eQ8vro9u5icXMUdITSNS8KY5HkiVDhAVFyIMlVZTrCEJOVSsYpTBjmDkrE8D28oK2BMpKUqISGPVbKDjr-43fDYQvm1c1N0TrfSvRdW6uK_YnRdLOxrQTDjnGRpIByuCM6-DOD7ItymoGmkATv4ggqSZYxiJoL14G_YT8r3z5NPbiyKaA</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Halder, Arjun</creator><creator>Bain, David C</creator><creator>Pitt, Tristan A</creator><creator>Shi, Zixiao</creator><creator>Oktawiec, Julia</creator><creator>Lee, Jung-Hoon</creator><creator>Tsangari, Stavrini</creator><creator>Ng, Marcus</creator><creator>Fuentes-Rivera, José J</creator><creator>Forse, Alexander C</creator><creator>Runčevski, Tomče</creator><creator>Muller, David A</creator><creator>Musser, Andrew J</creator><creator>Milner, Phillip J</creator><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231212</creationdate><title>Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks</title><author>Halder, Arjun ; Bain, David C ; Pitt, Tristan A ; Shi, Zixiao ; Oktawiec, Julia ; Lee, Jung-Hoon ; Tsangari, Stavrini ; Ng, Marcus ; Fuentes-Rivera, José J ; Forse, Alexander C ; Runčevski, Tomče ; Muller, David A ; Musser, Andrew J ; Milner, Phillip J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1124-d177a8639c0119f899d4c5610ae348ac7f827e67ed7766121dfe7794dcde31bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halder, Arjun</creatorcontrib><creatorcontrib>Bain, David C</creatorcontrib><creatorcontrib>Pitt, Tristan A</creatorcontrib><creatorcontrib>Shi, Zixiao</creatorcontrib><creatorcontrib>Oktawiec, Julia</creatorcontrib><creatorcontrib>Lee, Jung-Hoon</creatorcontrib><creatorcontrib>Tsangari, Stavrini</creatorcontrib><creatorcontrib>Ng, Marcus</creatorcontrib><creatorcontrib>Fuentes-Rivera, José J</creatorcontrib><creatorcontrib>Forse, Alexander C</creatorcontrib><creatorcontrib>Runčevski, Tomče</creatorcontrib><creatorcontrib>Muller, David A</creatorcontrib><creatorcontrib>Musser, Andrew J</creatorcontrib><creatorcontrib>Milner, Phillip J</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halder, Arjun</au><au>Bain, David C</au><au>Pitt, Tristan A</au><au>Shi, Zixiao</au><au>Oktawiec, Julia</au><au>Lee, Jung-Hoon</au><au>Tsangari, Stavrini</au><au>Ng, Marcus</au><au>Fuentes-Rivera, José J</au><au>Forse, Alexander C</au><au>Runčevski, Tomče</au><au>Muller, David A</au><au>Musser, Andrew J</au><au>Milner, Phillip J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem Mater</addtitle><date>2023-12-12</date><risdate>2023</risdate><volume>35</volume><issue>23</issue><spage>10086</spage><epage>10098</epage><pages>10086-10098</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M
(dobdc) (M = Mg, Mn, Ni; dobdc
= 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M
(dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H
dobdc and Mg
(dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H
dobdc
linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M
(dobdc) phases by heating in
-dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials.</abstract><cop>United States</cop><pmid>38225948</pmid><doi>10.1021/acs.chemmater.3c02121</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2023-12, Vol.35 (23), p.10086-10098 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10788154 |
source | American Chemical Society Journals |
title | Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Trapping%20of%20Photoluminescent%20Frameworks%20During%20High-Concentration%20Synthesis%20of%20Non-Emissive%20Metal-Organic%20Frameworks&rft.jtitle=Chemistry%20of%20materials&rft.au=Halder,%20Arjun&rft.date=2023-12-12&rft.volume=35&rft.issue=23&rft.spage=10086&rft.epage=10098&rft.pages=10086-10098&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.3c02121&rft_dat=%3Cproquest_pubme%3E2915572079%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915572079&rft_id=info:pmid/38225948&rfr_iscdi=true |