Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks

Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with dive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2023-12, Vol.35 (23), p.10086-10098
Hauptverfasser: Halder, Arjun, Bain, David C, Pitt, Tristan A, Shi, Zixiao, Oktawiec, Julia, Lee, Jung-Hoon, Tsangari, Stavrini, Ng, Marcus, Fuentes-Rivera, José J, Forse, Alexander C, Runčevski, Tomče, Muller, David A, Musser, Andrew J, Milner, Phillip J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10098
container_issue 23
container_start_page 10086
container_title Chemistry of materials
container_volume 35
creator Halder, Arjun
Bain, David C
Pitt, Tristan A
Shi, Zixiao
Oktawiec, Julia
Lee, Jung-Hoon
Tsangari, Stavrini
Ng, Marcus
Fuentes-Rivera, José J
Forse, Alexander C
Runčevski, Tomče
Muller, David A
Musser, Andrew J
Milner, Phillip J
description Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M (dobdc) (M = Mg, Mn, Ni; dobdc = 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M (dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H dobdc and Mg (dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H dobdc linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M (dobdc) phases by heating in -dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials.
doi_str_mv 10.1021/acs.chemmater.3c02121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10788154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915572079</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1124-d177a8639c0119f899d4c5610ae348ac7f827e67ed7766121dfe7794dcde31bf3</originalsourceid><addsrcrecordid>eNpVkElPwzAQhS0EgrL8BFCOXFJsZ7F9Qqi0gFglyjkyzqQxJHawExASPx5XlO000rw335sZhPYJHhNMyZFUfqxqaFvZgxsnKvQoWUMjklEcZxjTdTTCXLA4ZVm-hba9f8KYhFG-ibYSTmkmUj5CH5faQK9VNHey67RZRLaK7mrb22Zog-QVmD6aOdnCm3XPPjod3NJ1rhd1PLFmKTvZa2ui-3fT1-C1XyJurImnrfZev0J0Db1s4lu3kCYk_cJ20UYlGw97q7qDHmbT-eQ8vro9u5icXMUdITSNS8KY5HkiVDhAVFyIMlVZTrCEJOVSsYpTBjmDkrE8D28oK2BMpKUqISGPVbKDjr-43fDYQvm1c1N0TrfSvRdW6uK_YnRdLOxrQTDjnGRpIByuCM6-DOD7ItymoGmkATv4ggqSZYxiJoL14G_YT8r3z5NPbiyKaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915572079</pqid></control><display><type>article</type><title>Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks</title><source>American Chemical Society Journals</source><creator>Halder, Arjun ; Bain, David C ; Pitt, Tristan A ; Shi, Zixiao ; Oktawiec, Julia ; Lee, Jung-Hoon ; Tsangari, Stavrini ; Ng, Marcus ; Fuentes-Rivera, José J ; Forse, Alexander C ; Runčevski, Tomče ; Muller, David A ; Musser, Andrew J ; Milner, Phillip J</creator><creatorcontrib>Halder, Arjun ; Bain, David C ; Pitt, Tristan A ; Shi, Zixiao ; Oktawiec, Julia ; Lee, Jung-Hoon ; Tsangari, Stavrini ; Ng, Marcus ; Fuentes-Rivera, José J ; Forse, Alexander C ; Runčevski, Tomče ; Muller, David A ; Musser, Andrew J ; Milner, Phillip J</creatorcontrib><description>Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M (dobdc) (M = Mg, Mn, Ni; dobdc = 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M (dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H dobdc and Mg (dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H dobdc linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M (dobdc) phases by heating in -dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.3c02121</identifier><identifier>PMID: 38225948</identifier><language>eng</language><publisher>United States</publisher><ispartof>Chemistry of materials, 2023-12, Vol.35 (23), p.10086-10098</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38225948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Halder, Arjun</creatorcontrib><creatorcontrib>Bain, David C</creatorcontrib><creatorcontrib>Pitt, Tristan A</creatorcontrib><creatorcontrib>Shi, Zixiao</creatorcontrib><creatorcontrib>Oktawiec, Julia</creatorcontrib><creatorcontrib>Lee, Jung-Hoon</creatorcontrib><creatorcontrib>Tsangari, Stavrini</creatorcontrib><creatorcontrib>Ng, Marcus</creatorcontrib><creatorcontrib>Fuentes-Rivera, José J</creatorcontrib><creatorcontrib>Forse, Alexander C</creatorcontrib><creatorcontrib>Runčevski, Tomče</creatorcontrib><creatorcontrib>Muller, David A</creatorcontrib><creatorcontrib>Musser, Andrew J</creatorcontrib><creatorcontrib>Milner, Phillip J</creatorcontrib><title>Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks</title><title>Chemistry of materials</title><addtitle>Chem Mater</addtitle><description>Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M (dobdc) (M = Mg, Mn, Ni; dobdc = 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M (dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H dobdc and Mg (dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H dobdc linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M (dobdc) phases by heating in -dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkElPwzAQhS0EgrL8BFCOXFJsZ7F9Qqi0gFglyjkyzqQxJHawExASPx5XlO000rw335sZhPYJHhNMyZFUfqxqaFvZgxsnKvQoWUMjklEcZxjTdTTCXLA4ZVm-hba9f8KYhFG-ibYSTmkmUj5CH5faQK9VNHey67RZRLaK7mrb22Zog-QVmD6aOdnCm3XPPjod3NJ1rhd1PLFmKTvZa2ui-3fT1-C1XyJurImnrfZev0J0Db1s4lu3kCYk_cJ20UYlGw97q7qDHmbT-eQ8vro9u5icXMUdITSNS8KY5HkiVDhAVFyIMlVZTrCEJOVSsYpTBjmDkrE8D28oK2BMpKUqISGPVbKDjr-43fDYQvm1c1N0TrfSvRdW6uK_YnRdLOxrQTDjnGRpIByuCM6-DOD7ItymoGmkATv4ggqSZYxiJoL14G_YT8r3z5NPbiyKaA</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Halder, Arjun</creator><creator>Bain, David C</creator><creator>Pitt, Tristan A</creator><creator>Shi, Zixiao</creator><creator>Oktawiec, Julia</creator><creator>Lee, Jung-Hoon</creator><creator>Tsangari, Stavrini</creator><creator>Ng, Marcus</creator><creator>Fuentes-Rivera, José J</creator><creator>Forse, Alexander C</creator><creator>Runčevski, Tomče</creator><creator>Muller, David A</creator><creator>Musser, Andrew J</creator><creator>Milner, Phillip J</creator><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231212</creationdate><title>Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks</title><author>Halder, Arjun ; Bain, David C ; Pitt, Tristan A ; Shi, Zixiao ; Oktawiec, Julia ; Lee, Jung-Hoon ; Tsangari, Stavrini ; Ng, Marcus ; Fuentes-Rivera, José J ; Forse, Alexander C ; Runčevski, Tomče ; Muller, David A ; Musser, Andrew J ; Milner, Phillip J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1124-d177a8639c0119f899d4c5610ae348ac7f827e67ed7766121dfe7794dcde31bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halder, Arjun</creatorcontrib><creatorcontrib>Bain, David C</creatorcontrib><creatorcontrib>Pitt, Tristan A</creatorcontrib><creatorcontrib>Shi, Zixiao</creatorcontrib><creatorcontrib>Oktawiec, Julia</creatorcontrib><creatorcontrib>Lee, Jung-Hoon</creatorcontrib><creatorcontrib>Tsangari, Stavrini</creatorcontrib><creatorcontrib>Ng, Marcus</creatorcontrib><creatorcontrib>Fuentes-Rivera, José J</creatorcontrib><creatorcontrib>Forse, Alexander C</creatorcontrib><creatorcontrib>Runčevski, Tomče</creatorcontrib><creatorcontrib>Muller, David A</creatorcontrib><creatorcontrib>Musser, Andrew J</creatorcontrib><creatorcontrib>Milner, Phillip J</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halder, Arjun</au><au>Bain, David C</au><au>Pitt, Tristan A</au><au>Shi, Zixiao</au><au>Oktawiec, Julia</au><au>Lee, Jung-Hoon</au><au>Tsangari, Stavrini</au><au>Ng, Marcus</au><au>Fuentes-Rivera, José J</au><au>Forse, Alexander C</au><au>Runčevski, Tomče</au><au>Muller, David A</au><au>Musser, Andrew J</au><au>Milner, Phillip J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem Mater</addtitle><date>2023-12-12</date><risdate>2023</risdate><volume>35</volume><issue>23</issue><spage>10086</spage><epage>10098</epage><pages>10086-10098</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M (dobdc) (M = Mg, Mn, Ni; dobdc = 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M (dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H dobdc and Mg (dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H dobdc linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M (dobdc) phases by heating in -dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials.</abstract><cop>United States</cop><pmid>38225948</pmid><doi>10.1021/acs.chemmater.3c02121</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2023-12, Vol.35 (23), p.10086-10098
issn 0897-4756
1520-5002
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10788154
source American Chemical Society Journals
title Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Trapping%20of%20Photoluminescent%20Frameworks%20During%20High-Concentration%20Synthesis%20of%20Non-Emissive%20Metal-Organic%20Frameworks&rft.jtitle=Chemistry%20of%20materials&rft.au=Halder,%20Arjun&rft.date=2023-12-12&rft.volume=35&rft.issue=23&rft.spage=10086&rft.epage=10098&rft.pages=10086-10098&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.3c02121&rft_dat=%3Cproquest_pubme%3E2915572079%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915572079&rft_id=info:pmid/38225948&rfr_iscdi=true