Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors
Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-o...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-01, Vol.121 (2), p.e2300174121 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | e2300174121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Najma, Bibi Wei, Wei-Shao Baskaran, Aparna Foster, Peter J Duclos, Guillaume |
description | Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-organization of active matter. Cytoskeletal active gels display rich emergent dynamics, including extensile flows, locally contractile asters, and bulk contraction. However, it is unclear how the protein-protein interaction kinetics set their contractile or extensile nature. Here, we explore the origin of the transition from extensile bundles to contractile asters in a minimal reconstituted system composed of stabilized microtubules, depletant, adenosine 5'-triphosphate (ATP), and clusters of kinesin-1 motors. We show that the microtubule-binding and unbinding kinetics of highly processive motor clusters set their ability to end-accumulate, which can drive polarity sorting of the microtubules and aster formation. We further demonstrate that the microscopic time scale of end-accumulation sets the emergent time scale of aster formation. Finally, we show that biochemical regulation is insufficient to fully explain the transition as generic aligning interactions through depletion, cross-linking, or excluded volume interactions can drive bundle formation despite end-accumulating motors. The extensile-to-contractile transition is well captured by a simple self-assembly model where nematic and polar aligning interactions compete to form either bundles or asters. Starting from a five-dimensional organization phase space, we identify a single control parameter given by the ratio of the different component concentrations that dictates the material-scale organization. Overall, this work shows that the interplay of biochemical and mechanical tuning at the microscopic level controls the robust self-organization of active cytoskeletal materials. |
doi_str_mv | 10.1073/pnas.2300174121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10786313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915679885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-4410e162fc5ad08ca41cf409dc86713ad2f8596fac0436fa88b925b3d841781c3</originalsourceid><addsrcrecordid>eNpdkUtv1TAQhS0EopfCmh2yxIZN2hnbSewVQhUvqYgNrC1fxwFXiR38qMq_x1FLeaxmrPl87DOHkOcIZwgjP9-CyWeMA-AokOEDckBQ2A1CwUNyAGBjJwUTJ-RJzlcAoHoJj8kJlzj2coQD2T55m2K2cfOW-lBcMrb4GDK1MZQUF2poLqnaUpNZaEkmZL8DDaY7eu3o6m_a1GUa59Y3uVKPdWlnEya6xsXZupjUuhJTfkoezWbJ7tldPSVf3739cvGhu_z8_uPFm8vOCsZKJwSCw4HNtjcTSGsE2lmAmqwcRuRmYrPs1TAbC4K3IuVRsf7IJylwlGj5KXl9q7vV4-om65obs-gt-dWknzoar_-dBP9df4vXuu1VDhx5U3h1p5Dij-py0avP1i2LCS7WrJlClIIL1Tf05X_oVawpNH871Q-jknKnzm-pfeM5ufn-Nwj7s1zvceo_cbYbL_42cc__zo__AjTtnyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915679885</pqid></control><display><type>article</type><title>Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Najma, Bibi ; Wei, Wei-Shao ; Baskaran, Aparna ; Foster, Peter J ; Duclos, Guillaume</creator><creatorcontrib>Najma, Bibi ; Wei, Wei-Shao ; Baskaran, Aparna ; Foster, Peter J ; Duclos, Guillaume</creatorcontrib><description>Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-organization of active matter. Cytoskeletal active gels display rich emergent dynamics, including extensile flows, locally contractile asters, and bulk contraction. However, it is unclear how the protein-protein interaction kinetics set their contractile or extensile nature. Here, we explore the origin of the transition from extensile bundles to contractile asters in a minimal reconstituted system composed of stabilized microtubules, depletant, adenosine 5'-triphosphate (ATP), and clusters of kinesin-1 motors. We show that the microtubule-binding and unbinding kinetics of highly processive motor clusters set their ability to end-accumulate, which can drive polarity sorting of the microtubules and aster formation. We further demonstrate that the microscopic time scale of end-accumulation sets the emergent time scale of aster formation. Finally, we show that biochemical regulation is insufficient to fully explain the transition as generic aligning interactions through depletion, cross-linking, or excluded volume interactions can drive bundle formation despite end-accumulating motors. The extensile-to-contractile transition is well captured by a simple self-assembly model where nematic and polar aligning interactions compete to form either bundles or asters. Starting from a five-dimensional organization phase space, we identify a single control parameter given by the ratio of the different component concentrations that dictates the material-scale organization. Overall, this work shows that the interplay of biochemical and mechanical tuning at the microscopic level controls the robust self-organization of active cytoskeletal materials.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2300174121</identifier><identifier>PMID: 38175870</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Accumulation ; Adenosine ; Cell Movement ; Chromosome Segregation ; Chromosomes ; Clusters ; Contractility ; Crosslinking ; Cytoskeleton ; Cytoskeleton - metabolism ; Depletion ; Gels ; Kinesin ; Kinesins - metabolism ; Kinetics ; Microtubules ; Microtubules - metabolism ; Molecular motors ; Parameter identification ; Physical Sciences ; Proteins ; Robust control ; Self-assembly ; Time</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-01, Vol.121 (2), p.e2300174121</ispartof><rights>Copyright National Academy of Sciences Jan 9, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-4410e162fc5ad08ca41cf409dc86713ad2f8596fac0436fa88b925b3d841781c3</citedby><cites>FETCH-LOGICAL-c422t-4410e162fc5ad08ca41cf409dc86713ad2f8596fac0436fa88b925b3d841781c3</cites><orcidid>0000-0001-9467-4273 ; 0000-0003-1899-9978 ; 0000-0001-9010-8952 ; 0000-0003-1818-5886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786313/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786313/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38175870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Najma, Bibi</creatorcontrib><creatorcontrib>Wei, Wei-Shao</creatorcontrib><creatorcontrib>Baskaran, Aparna</creatorcontrib><creatorcontrib>Foster, Peter J</creatorcontrib><creatorcontrib>Duclos, Guillaume</creatorcontrib><title>Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-organization of active matter. Cytoskeletal active gels display rich emergent dynamics, including extensile flows, locally contractile asters, and bulk contraction. However, it is unclear how the protein-protein interaction kinetics set their contractile or extensile nature. Here, we explore the origin of the transition from extensile bundles to contractile asters in a minimal reconstituted system composed of stabilized microtubules, depletant, adenosine 5'-triphosphate (ATP), and clusters of kinesin-1 motors. We show that the microtubule-binding and unbinding kinetics of highly processive motor clusters set their ability to end-accumulate, which can drive polarity sorting of the microtubules and aster formation. We further demonstrate that the microscopic time scale of end-accumulation sets the emergent time scale of aster formation. Finally, we show that biochemical regulation is insufficient to fully explain the transition as generic aligning interactions through depletion, cross-linking, or excluded volume interactions can drive bundle formation despite end-accumulating motors. The extensile-to-contractile transition is well captured by a simple self-assembly model where nematic and polar aligning interactions compete to form either bundles or asters. Starting from a five-dimensional organization phase space, we identify a single control parameter given by the ratio of the different component concentrations that dictates the material-scale organization. Overall, this work shows that the interplay of biochemical and mechanical tuning at the microscopic level controls the robust self-organization of active cytoskeletal materials.</description><subject>Accumulation</subject><subject>Adenosine</subject><subject>Cell Movement</subject><subject>Chromosome Segregation</subject><subject>Chromosomes</subject><subject>Clusters</subject><subject>Contractility</subject><subject>Crosslinking</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Depletion</subject><subject>Gels</subject><subject>Kinesin</subject><subject>Kinesins - metabolism</subject><subject>Kinetics</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Molecular motors</subject><subject>Parameter identification</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Robust control</subject><subject>Self-assembly</subject><subject>Time</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1TAQhS0EopfCmh2yxIZN2hnbSewVQhUvqYgNrC1fxwFXiR38qMq_x1FLeaxmrPl87DOHkOcIZwgjP9-CyWeMA-AokOEDckBQ2A1CwUNyAGBjJwUTJ-RJzlcAoHoJj8kJlzj2coQD2T55m2K2cfOW-lBcMrb4GDK1MZQUF2poLqnaUpNZaEkmZL8DDaY7eu3o6m_a1GUa59Y3uVKPdWlnEya6xsXZupjUuhJTfkoezWbJ7tldPSVf3739cvGhu_z8_uPFm8vOCsZKJwSCw4HNtjcTSGsE2lmAmqwcRuRmYrPs1TAbC4K3IuVRsf7IJylwlGj5KXl9q7vV4-om65obs-gt-dWknzoar_-dBP9df4vXuu1VDhx5U3h1p5Dij-py0avP1i2LCS7WrJlClIIL1Tf05X_oVawpNH871Q-jknKnzm-pfeM5ufn-Nwj7s1zvceo_cbYbL_42cc__zo__AjTtnyA</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>Najma, Bibi</creator><creator>Wei, Wei-Shao</creator><creator>Baskaran, Aparna</creator><creator>Foster, Peter J</creator><creator>Duclos, Guillaume</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9467-4273</orcidid><orcidid>https://orcid.org/0000-0003-1899-9978</orcidid><orcidid>https://orcid.org/0000-0001-9010-8952</orcidid><orcidid>https://orcid.org/0000-0003-1818-5886</orcidid></search><sort><creationdate>20240109</creationdate><title>Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors</title><author>Najma, Bibi ; Wei, Wei-Shao ; Baskaran, Aparna ; Foster, Peter J ; Duclos, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-4410e162fc5ad08ca41cf409dc86713ad2f8596fac0436fa88b925b3d841781c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Adenosine</topic><topic>Cell Movement</topic><topic>Chromosome Segregation</topic><topic>Chromosomes</topic><topic>Clusters</topic><topic>Contractility</topic><topic>Crosslinking</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Depletion</topic><topic>Gels</topic><topic>Kinesin</topic><topic>Kinesins - metabolism</topic><topic>Kinetics</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Molecular motors</topic><topic>Parameter identification</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Robust control</topic><topic>Self-assembly</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najma, Bibi</creatorcontrib><creatorcontrib>Wei, Wei-Shao</creatorcontrib><creatorcontrib>Baskaran, Aparna</creatorcontrib><creatorcontrib>Foster, Peter J</creatorcontrib><creatorcontrib>Duclos, Guillaume</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najma, Bibi</au><au>Wei, Wei-Shao</au><au>Baskaran, Aparna</au><au>Foster, Peter J</au><au>Duclos, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-01-09</date><risdate>2024</risdate><volume>121</volume><issue>2</issue><spage>e2300174121</spage><pages>e2300174121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-organization of active matter. Cytoskeletal active gels display rich emergent dynamics, including extensile flows, locally contractile asters, and bulk contraction. However, it is unclear how the protein-protein interaction kinetics set their contractile or extensile nature. Here, we explore the origin of the transition from extensile bundles to contractile asters in a minimal reconstituted system composed of stabilized microtubules, depletant, adenosine 5'-triphosphate (ATP), and clusters of kinesin-1 motors. We show that the microtubule-binding and unbinding kinetics of highly processive motor clusters set their ability to end-accumulate, which can drive polarity sorting of the microtubules and aster formation. We further demonstrate that the microscopic time scale of end-accumulation sets the emergent time scale of aster formation. Finally, we show that biochemical regulation is insufficient to fully explain the transition as generic aligning interactions through depletion, cross-linking, or excluded volume interactions can drive bundle formation despite end-accumulating motors. The extensile-to-contractile transition is well captured by a simple self-assembly model where nematic and polar aligning interactions compete to form either bundles or asters. Starting from a five-dimensional organization phase space, we identify a single control parameter given by the ratio of the different component concentrations that dictates the material-scale organization. Overall, this work shows that the interplay of biochemical and mechanical tuning at the microscopic level controls the robust self-organization of active cytoskeletal materials.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38175870</pmid><doi>10.1073/pnas.2300174121</doi><orcidid>https://orcid.org/0000-0001-9467-4273</orcidid><orcidid>https://orcid.org/0000-0003-1899-9978</orcidid><orcidid>https://orcid.org/0000-0001-9010-8952</orcidid><orcidid>https://orcid.org/0000-0003-1818-5886</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-01, Vol.121 (2), p.e2300174121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10786313 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Accumulation Adenosine Cell Movement Chromosome Segregation Chromosomes Clusters Contractility Crosslinking Cytoskeleton Cytoskeleton - metabolism Depletion Gels Kinesin Kinesins - metabolism Kinetics Microtubules Microtubules - metabolism Molecular motors Parameter identification Physical Sciences Proteins Robust control Self-assembly Time |
title | Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20interactions%20control%20a%20structural%20transition%20in%20active%20mixtures%20of%20microtubules%20and%20molecular%20motors&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Najma,%20Bibi&rft.date=2024-01-09&rft.volume=121&rft.issue=2&rft.spage=e2300174121&rft.pages=e2300174121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2300174121&rft_dat=%3Cproquest_pubme%3E2915679885%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915679885&rft_id=info:pmid/38175870&rfr_iscdi=true |