Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors

Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-01, Vol.121 (2), p.e2300174121
Hauptverfasser: Najma, Bibi, Wei, Wei-Shao, Baskaran, Aparna, Foster, Peter J, Duclos, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page e2300174121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Najma, Bibi
Wei, Wei-Shao
Baskaran, Aparna
Foster, Peter J
Duclos, Guillaume
description Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-organization of active matter. Cytoskeletal active gels display rich emergent dynamics, including extensile flows, locally contractile asters, and bulk contraction. However, it is unclear how the protein-protein interaction kinetics set their contractile or extensile nature. Here, we explore the origin of the transition from extensile bundles to contractile asters in a minimal reconstituted system composed of stabilized microtubules, depletant, adenosine 5'-triphosphate (ATP), and clusters of kinesin-1 motors. We show that the microtubule-binding and unbinding kinetics of highly processive motor clusters set their ability to end-accumulate, which can drive polarity sorting of the microtubules and aster formation. We further demonstrate that the microscopic time scale of end-accumulation sets the emergent time scale of aster formation. Finally, we show that biochemical regulation is insufficient to fully explain the transition as generic aligning interactions through depletion, cross-linking, or excluded volume interactions can drive bundle formation despite end-accumulating motors. The extensile-to-contractile transition is well captured by a simple self-assembly model where nematic and polar aligning interactions compete to form either bundles or asters. Starting from a five-dimensional organization phase space, we identify a single control parameter given by the ratio of the different component concentrations that dictates the material-scale organization. Overall, this work shows that the interplay of biochemical and mechanical tuning at the microscopic level controls the robust self-organization of active cytoskeletal materials.
doi_str_mv 10.1073/pnas.2300174121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10786313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915679885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-4410e162fc5ad08ca41cf409dc86713ad2f8596fac0436fa88b925b3d841781c3</originalsourceid><addsrcrecordid>eNpdkUtv1TAQhS0EopfCmh2yxIZN2hnbSewVQhUvqYgNrC1fxwFXiR38qMq_x1FLeaxmrPl87DOHkOcIZwgjP9-CyWeMA-AokOEDckBQ2A1CwUNyAGBjJwUTJ-RJzlcAoHoJj8kJlzj2coQD2T55m2K2cfOW-lBcMrb4GDK1MZQUF2poLqnaUpNZaEkmZL8DDaY7eu3o6m_a1GUa59Y3uVKPdWlnEya6xsXZupjUuhJTfkoezWbJ7tldPSVf3739cvGhu_z8_uPFm8vOCsZKJwSCw4HNtjcTSGsE2lmAmqwcRuRmYrPs1TAbC4K3IuVRsf7IJylwlGj5KXl9q7vV4-om65obs-gt-dWknzoar_-dBP9df4vXuu1VDhx5U3h1p5Dij-py0avP1i2LCS7WrJlClIIL1Tf05X_oVawpNH871Q-jknKnzm-pfeM5ufn-Nwj7s1zvceo_cbYbL_42cc__zo__AjTtnyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915679885</pqid></control><display><type>article</type><title>Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Najma, Bibi ; Wei, Wei-Shao ; Baskaran, Aparna ; Foster, Peter J ; Duclos, Guillaume</creator><creatorcontrib>Najma, Bibi ; Wei, Wei-Shao ; Baskaran, Aparna ; Foster, Peter J ; Duclos, Guillaume</creatorcontrib><description>Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-organization of active matter. Cytoskeletal active gels display rich emergent dynamics, including extensile flows, locally contractile asters, and bulk contraction. However, it is unclear how the protein-protein interaction kinetics set their contractile or extensile nature. Here, we explore the origin of the transition from extensile bundles to contractile asters in a minimal reconstituted system composed of stabilized microtubules, depletant, adenosine 5'-triphosphate (ATP), and clusters of kinesin-1 motors. We show that the microtubule-binding and unbinding kinetics of highly processive motor clusters set their ability to end-accumulate, which can drive polarity sorting of the microtubules and aster formation. We further demonstrate that the microscopic time scale of end-accumulation sets the emergent time scale of aster formation. Finally, we show that biochemical regulation is insufficient to fully explain the transition as generic aligning interactions through depletion, cross-linking, or excluded volume interactions can drive bundle formation despite end-accumulating motors. The extensile-to-contractile transition is well captured by a simple self-assembly model where nematic and polar aligning interactions compete to form either bundles or asters. Starting from a five-dimensional organization phase space, we identify a single control parameter given by the ratio of the different component concentrations that dictates the material-scale organization. Overall, this work shows that the interplay of biochemical and mechanical tuning at the microscopic level controls the robust self-organization of active cytoskeletal materials.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2300174121</identifier><identifier>PMID: 38175870</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Accumulation ; Adenosine ; Cell Movement ; Chromosome Segregation ; Chromosomes ; Clusters ; Contractility ; Crosslinking ; Cytoskeleton ; Cytoskeleton - metabolism ; Depletion ; Gels ; Kinesin ; Kinesins - metabolism ; Kinetics ; Microtubules ; Microtubules - metabolism ; Molecular motors ; Parameter identification ; Physical Sciences ; Proteins ; Robust control ; Self-assembly ; Time</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-01, Vol.121 (2), p.e2300174121</ispartof><rights>Copyright National Academy of Sciences Jan 9, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-4410e162fc5ad08ca41cf409dc86713ad2f8596fac0436fa88b925b3d841781c3</citedby><cites>FETCH-LOGICAL-c422t-4410e162fc5ad08ca41cf409dc86713ad2f8596fac0436fa88b925b3d841781c3</cites><orcidid>0000-0001-9467-4273 ; 0000-0003-1899-9978 ; 0000-0001-9010-8952 ; 0000-0003-1818-5886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786313/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786313/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38175870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Najma, Bibi</creatorcontrib><creatorcontrib>Wei, Wei-Shao</creatorcontrib><creatorcontrib>Baskaran, Aparna</creatorcontrib><creatorcontrib>Foster, Peter J</creatorcontrib><creatorcontrib>Duclos, Guillaume</creatorcontrib><title>Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-organization of active matter. Cytoskeletal active gels display rich emergent dynamics, including extensile flows, locally contractile asters, and bulk contraction. However, it is unclear how the protein-protein interaction kinetics set their contractile or extensile nature. Here, we explore the origin of the transition from extensile bundles to contractile asters in a minimal reconstituted system composed of stabilized microtubules, depletant, adenosine 5'-triphosphate (ATP), and clusters of kinesin-1 motors. We show that the microtubule-binding and unbinding kinetics of highly processive motor clusters set their ability to end-accumulate, which can drive polarity sorting of the microtubules and aster formation. We further demonstrate that the microscopic time scale of end-accumulation sets the emergent time scale of aster formation. Finally, we show that biochemical regulation is insufficient to fully explain the transition as generic aligning interactions through depletion, cross-linking, or excluded volume interactions can drive bundle formation despite end-accumulating motors. The extensile-to-contractile transition is well captured by a simple self-assembly model where nematic and polar aligning interactions compete to form either bundles or asters. Starting from a five-dimensional organization phase space, we identify a single control parameter given by the ratio of the different component concentrations that dictates the material-scale organization. Overall, this work shows that the interplay of biochemical and mechanical tuning at the microscopic level controls the robust self-organization of active cytoskeletal materials.</description><subject>Accumulation</subject><subject>Adenosine</subject><subject>Cell Movement</subject><subject>Chromosome Segregation</subject><subject>Chromosomes</subject><subject>Clusters</subject><subject>Contractility</subject><subject>Crosslinking</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Depletion</subject><subject>Gels</subject><subject>Kinesin</subject><subject>Kinesins - metabolism</subject><subject>Kinetics</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Molecular motors</subject><subject>Parameter identification</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Robust control</subject><subject>Self-assembly</subject><subject>Time</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1TAQhS0EopfCmh2yxIZN2hnbSewVQhUvqYgNrC1fxwFXiR38qMq_x1FLeaxmrPl87DOHkOcIZwgjP9-CyWeMA-AokOEDckBQ2A1CwUNyAGBjJwUTJ-RJzlcAoHoJj8kJlzj2coQD2T55m2K2cfOW-lBcMrb4GDK1MZQUF2poLqnaUpNZaEkmZL8DDaY7eu3o6m_a1GUa59Y3uVKPdWlnEya6xsXZupjUuhJTfkoezWbJ7tldPSVf3739cvGhu_z8_uPFm8vOCsZKJwSCw4HNtjcTSGsE2lmAmqwcRuRmYrPs1TAbC4K3IuVRsf7IJylwlGj5KXl9q7vV4-om65obs-gt-dWknzoar_-dBP9df4vXuu1VDhx5U3h1p5Dij-py0avP1i2LCS7WrJlClIIL1Tf05X_oVawpNH871Q-jknKnzm-pfeM5ufn-Nwj7s1zvceo_cbYbL_42cc__zo__AjTtnyA</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>Najma, Bibi</creator><creator>Wei, Wei-Shao</creator><creator>Baskaran, Aparna</creator><creator>Foster, Peter J</creator><creator>Duclos, Guillaume</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9467-4273</orcidid><orcidid>https://orcid.org/0000-0003-1899-9978</orcidid><orcidid>https://orcid.org/0000-0001-9010-8952</orcidid><orcidid>https://orcid.org/0000-0003-1818-5886</orcidid></search><sort><creationdate>20240109</creationdate><title>Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors</title><author>Najma, Bibi ; Wei, Wei-Shao ; Baskaran, Aparna ; Foster, Peter J ; Duclos, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-4410e162fc5ad08ca41cf409dc86713ad2f8596fac0436fa88b925b3d841781c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Adenosine</topic><topic>Cell Movement</topic><topic>Chromosome Segregation</topic><topic>Chromosomes</topic><topic>Clusters</topic><topic>Contractility</topic><topic>Crosslinking</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Depletion</topic><topic>Gels</topic><topic>Kinesin</topic><topic>Kinesins - metabolism</topic><topic>Kinetics</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Molecular motors</topic><topic>Parameter identification</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Robust control</topic><topic>Self-assembly</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najma, Bibi</creatorcontrib><creatorcontrib>Wei, Wei-Shao</creatorcontrib><creatorcontrib>Baskaran, Aparna</creatorcontrib><creatorcontrib>Foster, Peter J</creatorcontrib><creatorcontrib>Duclos, Guillaume</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najma, Bibi</au><au>Wei, Wei-Shao</au><au>Baskaran, Aparna</au><au>Foster, Peter J</au><au>Duclos, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-01-09</date><risdate>2024</risdate><volume>121</volume><issue>2</issue><spage>e2300174121</spage><pages>e2300174121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-organization of active matter. Cytoskeletal active gels display rich emergent dynamics, including extensile flows, locally contractile asters, and bulk contraction. However, it is unclear how the protein-protein interaction kinetics set their contractile or extensile nature. Here, we explore the origin of the transition from extensile bundles to contractile asters in a minimal reconstituted system composed of stabilized microtubules, depletant, adenosine 5'-triphosphate (ATP), and clusters of kinesin-1 motors. We show that the microtubule-binding and unbinding kinetics of highly processive motor clusters set their ability to end-accumulate, which can drive polarity sorting of the microtubules and aster formation. We further demonstrate that the microscopic time scale of end-accumulation sets the emergent time scale of aster formation. Finally, we show that biochemical regulation is insufficient to fully explain the transition as generic aligning interactions through depletion, cross-linking, or excluded volume interactions can drive bundle formation despite end-accumulating motors. The extensile-to-contractile transition is well captured by a simple self-assembly model where nematic and polar aligning interactions compete to form either bundles or asters. Starting from a five-dimensional organization phase space, we identify a single control parameter given by the ratio of the different component concentrations that dictates the material-scale organization. Overall, this work shows that the interplay of biochemical and mechanical tuning at the microscopic level controls the robust self-organization of active cytoskeletal materials.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38175870</pmid><doi>10.1073/pnas.2300174121</doi><orcidid>https://orcid.org/0000-0001-9467-4273</orcidid><orcidid>https://orcid.org/0000-0003-1899-9978</orcidid><orcidid>https://orcid.org/0000-0001-9010-8952</orcidid><orcidid>https://orcid.org/0000-0003-1818-5886</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-01, Vol.121 (2), p.e2300174121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10786313
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Accumulation
Adenosine
Cell Movement
Chromosome Segregation
Chromosomes
Clusters
Contractility
Crosslinking
Cytoskeleton
Cytoskeleton - metabolism
Depletion
Gels
Kinesin
Kinesins - metabolism
Kinetics
Microtubules
Microtubules - metabolism
Molecular motors
Parameter identification
Physical Sciences
Proteins
Robust control
Self-assembly
Time
title Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20interactions%20control%20a%20structural%20transition%20in%20active%20mixtures%20of%20microtubules%20and%20molecular%20motors&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Najma,%20Bibi&rft.date=2024-01-09&rft.volume=121&rft.issue=2&rft.spage=e2300174121&rft.pages=e2300174121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2300174121&rft_dat=%3Cproquest_pubme%3E2915679885%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915679885&rft_id=info:pmid/38175870&rfr_iscdi=true