Structural analysis of PLD3 reveals insights into the mechanism of lysosomal 5′ exonuclease-mediated nucleic acid degradation

Abstract The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2024-01, Vol.52 (1), p.370-384
Hauptverfasser: Roske, Yvette, Cappel, Cedric, Cremer, Nils, Hoffmann, Patrick, Koudelka, Tomas, Tholey, Andreas, Heinemann, Udo, Daumke, Oliver, Damme, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue 1
container_start_page 370
container_title Nucleic acids research
container_volume 52
creator Roske, Yvette
Cappel, Cedric
Cremer, Nils
Hoffmann, Patrick
Koudelka, Tomas
Tholey, Andreas
Heinemann, Udo
Daumke, Oliver
Damme, Markus
description Abstract The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3. Graphical Abstract Graphical Abstract
doi_str_mv 10.1093/nar/gkad1114
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10783504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkad1114</oup_id><sourcerecordid>2892945767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-af9d9058377488b1840b97d62f27eb4914a293a082d1a72b3a51ac659f291b773</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EotPCjjXyDhYN9V_ieIWq8iuNBBKwtm5sZ8aQ2IPtVHQFz8Qj8SR4mLaCDStbvp_PufcehB5R8owSxc8CpLPNF7CUUnEHrSjvWCNUx-6iFeGkbSgR_RE6zvkzIVTQVtxHR1wqJWTPV-j7h5IWU5YEE4YA01X2GccRv1-_4Di5SwdTxj5kv9mW_aVEXLYOz85sIfg879n6KeY4V4X214-f2H2LYTGTg-ya2VkPxVn858UbDMZbbN0mgYXiY3iA7o3Vwj28Pk_Qp1cvP168adbvXr-9OF83RlBZGhiVVaTtuZSi7wfaCzIoaTs2MukGoagApjiQnlkKkg0cWgqma9XIFB2k5Cfo-UF3twy1KeNCqSPrXfIzpCsdwet_K8Fv9SZeakrqnloiqsLTa4UUvy4uFz37bNw0QXBxyZr1iinRym5vdnpATYo5Jzfe-lCi96HpGpq-Ca3ij__u7Ra-SakCTw5AXHb_l_oNz2Kkmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892945767</pqid></control><display><type>article</type><title>Structural analysis of PLD3 reveals insights into the mechanism of lysosomal 5′ exonuclease-mediated nucleic acid degradation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Roske, Yvette ; Cappel, Cedric ; Cremer, Nils ; Hoffmann, Patrick ; Koudelka, Tomas ; Tholey, Andreas ; Heinemann, Udo ; Daumke, Oliver ; Damme, Markus</creator><creatorcontrib>Roske, Yvette ; Cappel, Cedric ; Cremer, Nils ; Hoffmann, Patrick ; Koudelka, Tomas ; Tholey, Andreas ; Heinemann, Udo ; Daumke, Oliver ; Damme, Markus</creatorcontrib><description>Abstract The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3. Graphical Abstract Graphical Abstract</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkad1114</identifier><identifier>PMID: 37994783</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Exonucleases ; Humans ; Lysosomes - metabolism ; Nucleic Acid Enzymes ; Phosphodiesterase I ; Phospholipase D - chemistry ; Phospholipase D - genetics ; Phospholipase D - metabolism ; Phospholipases</subject><ispartof>Nucleic acids research, 2024-01, Vol.52 (1), p.370-384</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-af9d9058377488b1840b97d62f27eb4914a293a082d1a72b3a51ac659f291b773</citedby><cites>FETCH-LOGICAL-c417t-af9d9058377488b1840b97d62f27eb4914a293a082d1a72b3a51ac659f291b773</cites><orcidid>0000-0002-8191-3850 ; 0000-0002-9699-9351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783504/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783504/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37994783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roske, Yvette</creatorcontrib><creatorcontrib>Cappel, Cedric</creatorcontrib><creatorcontrib>Cremer, Nils</creatorcontrib><creatorcontrib>Hoffmann, Patrick</creatorcontrib><creatorcontrib>Koudelka, Tomas</creatorcontrib><creatorcontrib>Tholey, Andreas</creatorcontrib><creatorcontrib>Heinemann, Udo</creatorcontrib><creatorcontrib>Daumke, Oliver</creatorcontrib><creatorcontrib>Damme, Markus</creatorcontrib><title>Structural analysis of PLD3 reveals insights into the mechanism of lysosomal 5′ exonuclease-mediated nucleic acid degradation</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3. Graphical Abstract Graphical Abstract</description><subject>Exonucleases</subject><subject>Humans</subject><subject>Lysosomes - metabolism</subject><subject>Nucleic Acid Enzymes</subject><subject>Phosphodiesterase I</subject><subject>Phospholipase D - chemistry</subject><subject>Phospholipase D - genetics</subject><subject>Phospholipase D - metabolism</subject><subject>Phospholipases</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EotPCjjXyDhYN9V_ieIWq8iuNBBKwtm5sZ8aQ2IPtVHQFz8Qj8SR4mLaCDStbvp_PufcehB5R8owSxc8CpLPNF7CUUnEHrSjvWCNUx-6iFeGkbSgR_RE6zvkzIVTQVtxHR1wqJWTPV-j7h5IWU5YEE4YA01X2GccRv1-_4Di5SwdTxj5kv9mW_aVEXLYOz85sIfg879n6KeY4V4X214-f2H2LYTGTg-ya2VkPxVn858UbDMZbbN0mgYXiY3iA7o3Vwj28Pk_Qp1cvP168adbvXr-9OF83RlBZGhiVVaTtuZSi7wfaCzIoaTs2MukGoagApjiQnlkKkg0cWgqma9XIFB2k5Cfo-UF3twy1KeNCqSPrXfIzpCsdwet_K8Fv9SZeakrqnloiqsLTa4UUvy4uFz37bNw0QXBxyZr1iinRym5vdnpATYo5Jzfe-lCi96HpGpq-Ca3ij__u7Ra-SakCTw5AXHb_l_oNz2Kkmg</recordid><startdate>20240111</startdate><enddate>20240111</enddate><creator>Roske, Yvette</creator><creator>Cappel, Cedric</creator><creator>Cremer, Nils</creator><creator>Hoffmann, Patrick</creator><creator>Koudelka, Tomas</creator><creator>Tholey, Andreas</creator><creator>Heinemann, Udo</creator><creator>Daumke, Oliver</creator><creator>Damme, Markus</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8191-3850</orcidid><orcidid>https://orcid.org/0000-0002-9699-9351</orcidid></search><sort><creationdate>20240111</creationdate><title>Structural analysis of PLD3 reveals insights into the mechanism of lysosomal 5′ exonuclease-mediated nucleic acid degradation</title><author>Roske, Yvette ; Cappel, Cedric ; Cremer, Nils ; Hoffmann, Patrick ; Koudelka, Tomas ; Tholey, Andreas ; Heinemann, Udo ; Daumke, Oliver ; Damme, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-af9d9058377488b1840b97d62f27eb4914a293a082d1a72b3a51ac659f291b773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Exonucleases</topic><topic>Humans</topic><topic>Lysosomes - metabolism</topic><topic>Nucleic Acid Enzymes</topic><topic>Phosphodiesterase I</topic><topic>Phospholipase D - chemistry</topic><topic>Phospholipase D - genetics</topic><topic>Phospholipase D - metabolism</topic><topic>Phospholipases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roske, Yvette</creatorcontrib><creatorcontrib>Cappel, Cedric</creatorcontrib><creatorcontrib>Cremer, Nils</creatorcontrib><creatorcontrib>Hoffmann, Patrick</creatorcontrib><creatorcontrib>Koudelka, Tomas</creatorcontrib><creatorcontrib>Tholey, Andreas</creatorcontrib><creatorcontrib>Heinemann, Udo</creatorcontrib><creatorcontrib>Daumke, Oliver</creatorcontrib><creatorcontrib>Damme, Markus</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roske, Yvette</au><au>Cappel, Cedric</au><au>Cremer, Nils</au><au>Hoffmann, Patrick</au><au>Koudelka, Tomas</au><au>Tholey, Andreas</au><au>Heinemann, Udo</au><au>Daumke, Oliver</au><au>Damme, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural analysis of PLD3 reveals insights into the mechanism of lysosomal 5′ exonuclease-mediated nucleic acid degradation</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2024-01-11</date><risdate>2024</risdate><volume>52</volume><issue>1</issue><spage>370</spage><epage>384</epage><pages>370-384</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3. Graphical Abstract Graphical Abstract</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>37994783</pmid><doi>10.1093/nar/gkad1114</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8191-3850</orcidid><orcidid>https://orcid.org/0000-0002-9699-9351</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2024-01, Vol.52 (1), p.370-384
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10783504
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Exonucleases
Humans
Lysosomes - metabolism
Nucleic Acid Enzymes
Phosphodiesterase I
Phospholipase D - chemistry
Phospholipase D - genetics
Phospholipase D - metabolism
Phospholipases
title Structural analysis of PLD3 reveals insights into the mechanism of lysosomal 5′ exonuclease-mediated nucleic acid degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20analysis%20of%20PLD3%20reveals%20insights%20into%20the%20mechanism%20of%20lysosomal%205%E2%80%B2%20exonuclease-mediated%20nucleic%20acid%20degradation&rft.jtitle=Nucleic%20acids%20research&rft.au=Roske,%20Yvette&rft.date=2024-01-11&rft.volume=52&rft.issue=1&rft.spage=370&rft.epage=384&rft.pages=370-384&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkad1114&rft_dat=%3Cproquest_pubme%3E2892945767%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892945767&rft_id=info:pmid/37994783&rft_oup_id=10.1093/nar/gkad1114&rfr_iscdi=true