Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator–Solvent Reactions and Material Properties Correlation

Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2024-01, Vol.36 (1), p.407-416
Hauptverfasser: Chevigny, Romain, Rahkola, Henna, Sitsanidis, Efstratios D., Korhonen, Elsa, Hiscock, Jennifer R., Pettersson, Mika, Nissinen, Maija
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 1
container_start_page 407
container_title Chemistry of materials
container_volume 36
creator Chevigny, Romain
Rahkola, Henna
Sitsanidis, Efstratios D.
Korhonen, Elsa
Hiscock, Jennifer R.
Pettersson, Mika
Nissinen, Maija
description Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates.
doi_str_mv 10.1021/acs.chemmater.3c02327
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10782441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2914258364</sourcerecordid><originalsourceid>FETCH-LOGICAL-a436t-81e64b31de683b0094f11885b68da74f4ceef45f0c723342778284e615aa78743</originalsourceid><addsrcrecordid>eNqFkc2O0zAUhS0EYsrAI4C8hEWK_xI7bFBVwcxIRYyYYW05zg31yImLnVTMjnfgDXkSHLVUwIaNLV2f8_nYB6HnlCwpYfS1sWlpt9D3ZoS45JYwzuQDtKAlI0VJCHuIFkTVshCyrM7Qk5TuCKHZqh6jM64YYzVXC_TtJvg9DGNxNbSThRbfRjMklyf4BnxXrFKCvvH3OHT4GnajawFfgE9v5tWMIf78_uOIwJ_A2NGFIWEztPjDHMwZj69j2EEcHSS8DjHOtix6ih51xid4dtzP0ef3727Xl8Xm48XVerUpjODVWCgKlWg4baFSvCGkFh2lSpVNpVojRScsQCfKjljJOBdMSsWUgIqWxkglBT9Hbw_c3dT00NocNBqvd9H1Jt7rYJz--2RwW_0l7DUlGSUEzYRXB8L2H9_laqPnGRGSiorW-1n78nhbDF8nSKPuXbLgvRkgTEmzmgpWKl7NwcqD1MaQUoTuxKZEzxXrXLE-VayPFWffiz8fdHL97jQL6EEw--_CFIf8v_-B_gLgsbkv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914258364</pqid></control><display><type>article</type><title>Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator–Solvent Reactions and Material Properties Correlation</title><source>American Chemical Society Journals</source><creator>Chevigny, Romain ; Rahkola, Henna ; Sitsanidis, Efstratios D. ; Korhonen, Elsa ; Hiscock, Jennifer R. ; Pettersson, Mika ; Nissinen, Maija</creator><creatorcontrib>Chevigny, Romain ; Rahkola, Henna ; Sitsanidis, Efstratios D. ; Korhonen, Elsa ; Hiscock, Jennifer R. ; Pettersson, Mika ; Nissinen, Maija</creatorcontrib><description>Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.3c02327</identifier><identifier>PMID: 38222938</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bioengineering ; Biomaterials ; Chemical Sciences ; Life Sciences ; Material chemistry</subject><ispartof>Chemistry of materials, 2024-01, Vol.36 (1), p.407-416</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society.</rights><rights>Attribution</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a436t-81e64b31de683b0094f11885b68da74f4ceef45f0c723342778284e615aa78743</cites><orcidid>0000-0002-1406-8802 ; 0000-0002-6880-2283 ; 0000-0002-5463-9745 ; 0009-0006-8667-3944 ; 0000-0001-7560-4632 ; 0009-0002-3208-1864 ; 0000-0001-5727-1336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.3c02327$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.3c02327$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38222938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04714619$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chevigny, Romain</creatorcontrib><creatorcontrib>Rahkola, Henna</creatorcontrib><creatorcontrib>Sitsanidis, Efstratios D.</creatorcontrib><creatorcontrib>Korhonen, Elsa</creatorcontrib><creatorcontrib>Hiscock, Jennifer R.</creatorcontrib><creatorcontrib>Pettersson, Mika</creatorcontrib><creatorcontrib>Nissinen, Maija</creatorcontrib><title>Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator–Solvent Reactions and Material Properties Correlation</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates.</description><subject>Bioengineering</subject><subject>Biomaterials</subject><subject>Chemical Sciences</subject><subject>Life Sciences</subject><subject>Material chemistry</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc2O0zAUhS0EYsrAI4C8hEWK_xI7bFBVwcxIRYyYYW05zg31yImLnVTMjnfgDXkSHLVUwIaNLV2f8_nYB6HnlCwpYfS1sWlpt9D3ZoS45JYwzuQDtKAlI0VJCHuIFkTVshCyrM7Qk5TuCKHZqh6jM64YYzVXC_TtJvg9DGNxNbSThRbfRjMklyf4BnxXrFKCvvH3OHT4GnajawFfgE9v5tWMIf78_uOIwJ_A2NGFIWEztPjDHMwZj69j2EEcHSS8DjHOtix6ih51xid4dtzP0ef3727Xl8Xm48XVerUpjODVWCgKlWg4baFSvCGkFh2lSpVNpVojRScsQCfKjljJOBdMSsWUgIqWxkglBT9Hbw_c3dT00NocNBqvd9H1Jt7rYJz--2RwW_0l7DUlGSUEzYRXB8L2H9_laqPnGRGSiorW-1n78nhbDF8nSKPuXbLgvRkgTEmzmgpWKl7NwcqD1MaQUoTuxKZEzxXrXLE-VayPFWffiz8fdHL97jQL6EEw--_CFIf8v_-B_gLgsbkv</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>Chevigny, Romain</creator><creator>Rahkola, Henna</creator><creator>Sitsanidis, Efstratios D.</creator><creator>Korhonen, Elsa</creator><creator>Hiscock, Jennifer R.</creator><creator>Pettersson, Mika</creator><creator>Nissinen, Maija</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1406-8802</orcidid><orcidid>https://orcid.org/0000-0002-6880-2283</orcidid><orcidid>https://orcid.org/0000-0002-5463-9745</orcidid><orcidid>https://orcid.org/0009-0006-8667-3944</orcidid><orcidid>https://orcid.org/0000-0001-7560-4632</orcidid><orcidid>https://orcid.org/0009-0002-3208-1864</orcidid><orcidid>https://orcid.org/0000-0001-5727-1336</orcidid></search><sort><creationdate>20240109</creationdate><title>Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator–Solvent Reactions and Material Properties Correlation</title><author>Chevigny, Romain ; Rahkola, Henna ; Sitsanidis, Efstratios D. ; Korhonen, Elsa ; Hiscock, Jennifer R. ; Pettersson, Mika ; Nissinen, Maija</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a436t-81e64b31de683b0094f11885b68da74f4ceef45f0c723342778284e615aa78743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioengineering</topic><topic>Biomaterials</topic><topic>Chemical Sciences</topic><topic>Life Sciences</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chevigny, Romain</creatorcontrib><creatorcontrib>Rahkola, Henna</creatorcontrib><creatorcontrib>Sitsanidis, Efstratios D.</creatorcontrib><creatorcontrib>Korhonen, Elsa</creatorcontrib><creatorcontrib>Hiscock, Jennifer R.</creatorcontrib><creatorcontrib>Pettersson, Mika</creatorcontrib><creatorcontrib>Nissinen, Maija</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chevigny, Romain</au><au>Rahkola, Henna</au><au>Sitsanidis, Efstratios D.</au><au>Korhonen, Elsa</au><au>Hiscock, Jennifer R.</au><au>Pettersson, Mika</au><au>Nissinen, Maija</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator–Solvent Reactions and Material Properties Correlation</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2024-01-09</date><risdate>2024</risdate><volume>36</volume><issue>1</issue><spage>407</spage><epage>416</epage><pages>407-416</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38222938</pmid><doi>10.1021/acs.chemmater.3c02327</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1406-8802</orcidid><orcidid>https://orcid.org/0000-0002-6880-2283</orcidid><orcidid>https://orcid.org/0000-0002-5463-9745</orcidid><orcidid>https://orcid.org/0009-0006-8667-3944</orcidid><orcidid>https://orcid.org/0000-0001-7560-4632</orcidid><orcidid>https://orcid.org/0009-0002-3208-1864</orcidid><orcidid>https://orcid.org/0000-0001-5727-1336</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2024-01, Vol.36 (1), p.407-416
issn 0897-4756
1520-5002
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10782441
source American Chemical Society Journals
subjects Bioengineering
Biomaterials
Chemical Sciences
Life Sciences
Material chemistry
title Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator–Solvent Reactions and Material Properties Correlation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T11%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent-Induced%20Transient%20Self-Assembly%20of%20Peptide%20Gels:%20Gelator%E2%80%93Solvent%20Reactions%20and%20Material%20Properties%20Correlation&rft.jtitle=Chemistry%20of%20materials&rft.au=Chevigny,%20Romain&rft.date=2024-01-09&rft.volume=36&rft.issue=1&rft.spage=407&rft.epage=416&rft.pages=407-416&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.3c02327&rft_dat=%3Cproquest_pubme%3E2914258364%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2914258364&rft_id=info:pmid/38222938&rfr_iscdi=true