Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator–Solvent Reactions and Material Properties Correlation
Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participate...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2024-01, Vol.36 (1), p.407-416 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | 1 |
container_start_page | 407 |
container_title | Chemistry of materials |
container_volume | 36 |
creator | Chevigny, Romain Rahkola, Henna Sitsanidis, Efstratios D. Korhonen, Elsa Hiscock, Jennifer R. Pettersson, Mika Nissinen, Maija |
description | Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates. |
doi_str_mv | 10.1021/acs.chemmater.3c02327 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10782441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2914258364</sourcerecordid><originalsourceid>FETCH-LOGICAL-a436t-81e64b31de683b0094f11885b68da74f4ceef45f0c723342778284e615aa78743</originalsourceid><addsrcrecordid>eNqFkc2O0zAUhS0EYsrAI4C8hEWK_xI7bFBVwcxIRYyYYW05zg31yImLnVTMjnfgDXkSHLVUwIaNLV2f8_nYB6HnlCwpYfS1sWlpt9D3ZoS45JYwzuQDtKAlI0VJCHuIFkTVshCyrM7Qk5TuCKHZqh6jM64YYzVXC_TtJvg9DGNxNbSThRbfRjMklyf4BnxXrFKCvvH3OHT4GnajawFfgE9v5tWMIf78_uOIwJ_A2NGFIWEztPjDHMwZj69j2EEcHSS8DjHOtix6ih51xid4dtzP0ef3727Xl8Xm48XVerUpjODVWCgKlWg4baFSvCGkFh2lSpVNpVojRScsQCfKjljJOBdMSsWUgIqWxkglBT9Hbw_c3dT00NocNBqvd9H1Jt7rYJz--2RwW_0l7DUlGSUEzYRXB8L2H9_laqPnGRGSiorW-1n78nhbDF8nSKPuXbLgvRkgTEmzmgpWKl7NwcqD1MaQUoTuxKZEzxXrXLE-VayPFWffiz8fdHL97jQL6EEw--_CFIf8v_-B_gLgsbkv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914258364</pqid></control><display><type>article</type><title>Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator–Solvent Reactions and Material Properties Correlation</title><source>American Chemical Society Journals</source><creator>Chevigny, Romain ; Rahkola, Henna ; Sitsanidis, Efstratios D. ; Korhonen, Elsa ; Hiscock, Jennifer R. ; Pettersson, Mika ; Nissinen, Maija</creator><creatorcontrib>Chevigny, Romain ; Rahkola, Henna ; Sitsanidis, Efstratios D. ; Korhonen, Elsa ; Hiscock, Jennifer R. ; Pettersson, Mika ; Nissinen, Maija</creatorcontrib><description>Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.3c02327</identifier><identifier>PMID: 38222938</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bioengineering ; Biomaterials ; Chemical Sciences ; Life Sciences ; Material chemistry</subject><ispartof>Chemistry of materials, 2024-01, Vol.36 (1), p.407-416</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society.</rights><rights>Attribution</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a436t-81e64b31de683b0094f11885b68da74f4ceef45f0c723342778284e615aa78743</cites><orcidid>0000-0002-1406-8802 ; 0000-0002-6880-2283 ; 0000-0002-5463-9745 ; 0009-0006-8667-3944 ; 0000-0001-7560-4632 ; 0009-0002-3208-1864 ; 0000-0001-5727-1336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.3c02327$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.3c02327$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38222938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04714619$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chevigny, Romain</creatorcontrib><creatorcontrib>Rahkola, Henna</creatorcontrib><creatorcontrib>Sitsanidis, Efstratios D.</creatorcontrib><creatorcontrib>Korhonen, Elsa</creatorcontrib><creatorcontrib>Hiscock, Jennifer R.</creatorcontrib><creatorcontrib>Pettersson, Mika</creatorcontrib><creatorcontrib>Nissinen, Maija</creatorcontrib><title>Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator–Solvent Reactions and Material Properties Correlation</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates.</description><subject>Bioengineering</subject><subject>Biomaterials</subject><subject>Chemical Sciences</subject><subject>Life Sciences</subject><subject>Material chemistry</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc2O0zAUhS0EYsrAI4C8hEWK_xI7bFBVwcxIRYyYYW05zg31yImLnVTMjnfgDXkSHLVUwIaNLV2f8_nYB6HnlCwpYfS1sWlpt9D3ZoS45JYwzuQDtKAlI0VJCHuIFkTVshCyrM7Qk5TuCKHZqh6jM64YYzVXC_TtJvg9DGNxNbSThRbfRjMklyf4BnxXrFKCvvH3OHT4GnajawFfgE9v5tWMIf78_uOIwJ_A2NGFIWEztPjDHMwZj69j2EEcHSS8DjHOtix6ih51xid4dtzP0ef3727Xl8Xm48XVerUpjODVWCgKlWg4baFSvCGkFh2lSpVNpVojRScsQCfKjljJOBdMSsWUgIqWxkglBT9Hbw_c3dT00NocNBqvd9H1Jt7rYJz--2RwW_0l7DUlGSUEzYRXB8L2H9_laqPnGRGSiorW-1n78nhbDF8nSKPuXbLgvRkgTEmzmgpWKl7NwcqD1MaQUoTuxKZEzxXrXLE-VayPFWffiz8fdHL97jQL6EEw--_CFIf8v_-B_gLgsbkv</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>Chevigny, Romain</creator><creator>Rahkola, Henna</creator><creator>Sitsanidis, Efstratios D.</creator><creator>Korhonen, Elsa</creator><creator>Hiscock, Jennifer R.</creator><creator>Pettersson, Mika</creator><creator>Nissinen, Maija</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1406-8802</orcidid><orcidid>https://orcid.org/0000-0002-6880-2283</orcidid><orcidid>https://orcid.org/0000-0002-5463-9745</orcidid><orcidid>https://orcid.org/0009-0006-8667-3944</orcidid><orcidid>https://orcid.org/0000-0001-7560-4632</orcidid><orcidid>https://orcid.org/0009-0002-3208-1864</orcidid><orcidid>https://orcid.org/0000-0001-5727-1336</orcidid></search><sort><creationdate>20240109</creationdate><title>Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator–Solvent Reactions and Material Properties Correlation</title><author>Chevigny, Romain ; Rahkola, Henna ; Sitsanidis, Efstratios D. ; Korhonen, Elsa ; Hiscock, Jennifer R. ; Pettersson, Mika ; Nissinen, Maija</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a436t-81e64b31de683b0094f11885b68da74f4ceef45f0c723342778284e615aa78743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioengineering</topic><topic>Biomaterials</topic><topic>Chemical Sciences</topic><topic>Life Sciences</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chevigny, Romain</creatorcontrib><creatorcontrib>Rahkola, Henna</creatorcontrib><creatorcontrib>Sitsanidis, Efstratios D.</creatorcontrib><creatorcontrib>Korhonen, Elsa</creatorcontrib><creatorcontrib>Hiscock, Jennifer R.</creatorcontrib><creatorcontrib>Pettersson, Mika</creatorcontrib><creatorcontrib>Nissinen, Maija</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chevigny, Romain</au><au>Rahkola, Henna</au><au>Sitsanidis, Efstratios D.</au><au>Korhonen, Elsa</au><au>Hiscock, Jennifer R.</au><au>Pettersson, Mika</au><au>Nissinen, Maija</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator–Solvent Reactions and Material Properties Correlation</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2024-01-09</date><risdate>2024</risdate><volume>36</volume><issue>1</issue><spage>407</spage><epage>416</epage><pages>407-416</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38222938</pmid><doi>10.1021/acs.chemmater.3c02327</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1406-8802</orcidid><orcidid>https://orcid.org/0000-0002-6880-2283</orcidid><orcidid>https://orcid.org/0000-0002-5463-9745</orcidid><orcidid>https://orcid.org/0009-0006-8667-3944</orcidid><orcidid>https://orcid.org/0000-0001-7560-4632</orcidid><orcidid>https://orcid.org/0009-0002-3208-1864</orcidid><orcidid>https://orcid.org/0000-0001-5727-1336</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2024-01, Vol.36 (1), p.407-416 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10782441 |
source | American Chemical Society Journals |
subjects | Bioengineering Biomaterials Chemical Sciences Life Sciences Material chemistry |
title | Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator–Solvent Reactions and Material Properties Correlation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T11%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent-Induced%20Transient%20Self-Assembly%20of%20Peptide%20Gels:%20Gelator%E2%80%93Solvent%20Reactions%20and%20Material%20Properties%20Correlation&rft.jtitle=Chemistry%20of%20materials&rft.au=Chevigny,%20Romain&rft.date=2024-01-09&rft.volume=36&rft.issue=1&rft.spage=407&rft.epage=416&rft.pages=407-416&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.3c02327&rft_dat=%3Cproquest_pubme%3E2914258364%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2914258364&rft_id=info:pmid/38222938&rfr_iscdi=true |