Surface Evaluation of Gyroid Structures for Manufacturing Rubber-Textile Conveyor Belt Carcasses Using Micro-CT

Gyroid structures are among the most widely used three-dimensional elements produced by various additive manufacturing technologies. This paper focuses on a metrological analysis of Flexfill 92A material specimens with a relative density (25 to 85%) using industrial computer tomography. The results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-12, Vol.16 (1), p.48
Hauptverfasser: Tkac, Jozef, Toth, Teodor, Fedorko, Gabriel, Molnar, Vieroslav, Dovica, Miroslav, Samborski, Sylwester
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 48
container_title Polymers
container_volume 16
creator Tkac, Jozef
Toth, Teodor
Fedorko, Gabriel
Molnar, Vieroslav
Dovica, Miroslav
Samborski, Sylwester
description Gyroid structures are among the most widely used three-dimensional elements produced by various additive manufacturing technologies. This paper focuses on a metrological analysis of Flexfill 92A material specimens with a relative density (25 to 85%) using industrial computer tomography. The results show that for a given structure, the best method is to use surface determination with the closure of internal defects in the material. The analysis implies that the smallest deviations of the specimens' external dimensions were achieved with respect to the CAD model at the highest relative densities. The wall thickness shows the smallest percentage change of 0.5685 at 45% relative density and the largest at 25% and 85% relative density. The nominal-actual comparison of manufactured specimens to the CAD model shows the smallest cumulative deviation of 0.209 mm at 90% and 25% relative density, while it slightly increases with increasing relative density. All produced specimens have a smaller material volume than their theoretical volume value, while the percentage change in volume is up to 8.6%. The surface of specimens is larger compared with the theoretical values and the percentage change reaches up to 25.3%. The percentage of pores in the specimens increases with increasing relative density and reaches 6%. The acquired knowledge will be applied in the framework of research focused on the possibilities of using additive manufacturing to produce a skeleton of rubber-textile conveyor belts. This paper presents initial research on the possibility of replacing the carcass of rubber-textile belts with an additive technology use.
doi_str_mv 10.3390/polym16010048
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779347405</galeid><sourcerecordid>A779347405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-dcb76651dd7aa70d4a921ae57759a531e03ece16e91e885d52044079ab49d8923</originalsourceid><addsrcrecordid>eNpdkc1v3CAQxa2qVROlOfZaWeqlF6fDh405VamVJpESVWo2Z4TxeEtkwxbMKvvfl9WmUVI4gOD3Hsy8ovhI4IwxCV83ftrNpAECwNs3xTEFwSrOGnj7Yn9UnMb4AHnwummIeF8csZYCEYQdF_4uhVEbLC-2ekp6sd6Vfiwvd8HbobxbQjJLChjL0YfyVruU4Xxg3br8lfoeQ7XCx8VOWHbebXGXqe84LWWng9ExZuF93MO31gRfdasPxbtRTxFPn9aT4v7Hxaq7qm5-Xl535zeV4YQs1WB60TQ1GQahtYCBa0mJxlqIWuqaEQSGBkmDkmDb1kNNgXMQUvdcDq2k7KT4dvDdpH7GwaBbgp7UJthZh53y2qrXN87-Vmu_VQREC03Ls8OXJ4fg_ySMi5ptNDhN2qFPUVFJGOc1UJbRz_-hDz4Fl-vbU7SlEqjM1NmBWusJlXWjzw-bPAecrfEOx9xGdS6EZFxwqLOgOghy62IMOD5_n4Da569e5Z_5Ty9rfqb_pc3-Au3FrHY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912829029</pqid></control><display><type>article</type><title>Surface Evaluation of Gyroid Structures for Manufacturing Rubber-Textile Conveyor Belt Carcasses Using Micro-CT</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tkac, Jozef ; Toth, Teodor ; Fedorko, Gabriel ; Molnar, Vieroslav ; Dovica, Miroslav ; Samborski, Sylwester</creator><creatorcontrib>Tkac, Jozef ; Toth, Teodor ; Fedorko, Gabriel ; Molnar, Vieroslav ; Dovica, Miroslav ; Samborski, Sylwester</creatorcontrib><description>Gyroid structures are among the most widely used three-dimensional elements produced by various additive manufacturing technologies. This paper focuses on a metrological analysis of Flexfill 92A material specimens with a relative density (25 to 85%) using industrial computer tomography. The results show that for a given structure, the best method is to use surface determination with the closure of internal defects in the material. The analysis implies that the smallest deviations of the specimens' external dimensions were achieved with respect to the CAD model at the highest relative densities. The wall thickness shows the smallest percentage change of 0.5685 at 45% relative density and the largest at 25% and 85% relative density. The nominal-actual comparison of manufactured specimens to the CAD model shows the smallest cumulative deviation of 0.209 mm at 90% and 25% relative density, while it slightly increases with increasing relative density. All produced specimens have a smaller material volume than their theoretical volume value, while the percentage change in volume is up to 8.6%. The surface of specimens is larger compared with the theoretical values and the percentage change reaches up to 25.3%. The percentage of pores in the specimens increases with increasing relative density and reaches 6%. The acquired knowledge will be applied in the framework of research focused on the possibilities of using additive manufacturing to produce a skeleton of rubber-textile conveyor belts. This paper presents initial research on the possibility of replacing the carcass of rubber-textile belts with an additive technology use.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16010048</identifier><identifier>PMID: 38201713</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3D printing ; Belt conveyors ; CAD-CAM systems industry ; Carcasses ; Computed tomography ; Computer-aided design ; Conveying machinery ; Deviation ; Industry 4.0 ; Knowledge acquisition ; Manufacturing ; Porous materials ; Research methodology ; Rubber ; Rubber industry ; Specific gravity ; Textile fabrics ; Textiles ; Wall thickness</subject><ispartof>Polymers, 2023-12, Vol.16 (1), p.48</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c411t-dcb76651dd7aa70d4a921ae57759a531e03ece16e91e885d52044079ab49d8923</cites><orcidid>0000-0002-8104-0914 ; 0000-0002-2013-2305 ; 0000-0003-1086-9511 ; 0000-0003-4182-4033 ; 0000-0002-5187-5283 ; 0000-0002-3524-3200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780684/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780684/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27906,27907,53773,53775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38201713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tkac, Jozef</creatorcontrib><creatorcontrib>Toth, Teodor</creatorcontrib><creatorcontrib>Fedorko, Gabriel</creatorcontrib><creatorcontrib>Molnar, Vieroslav</creatorcontrib><creatorcontrib>Dovica, Miroslav</creatorcontrib><creatorcontrib>Samborski, Sylwester</creatorcontrib><title>Surface Evaluation of Gyroid Structures for Manufacturing Rubber-Textile Conveyor Belt Carcasses Using Micro-CT</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Gyroid structures are among the most widely used three-dimensional elements produced by various additive manufacturing technologies. This paper focuses on a metrological analysis of Flexfill 92A material specimens with a relative density (25 to 85%) using industrial computer tomography. The results show that for a given structure, the best method is to use surface determination with the closure of internal defects in the material. The analysis implies that the smallest deviations of the specimens' external dimensions were achieved with respect to the CAD model at the highest relative densities. The wall thickness shows the smallest percentage change of 0.5685 at 45% relative density and the largest at 25% and 85% relative density. The nominal-actual comparison of manufactured specimens to the CAD model shows the smallest cumulative deviation of 0.209 mm at 90% and 25% relative density, while it slightly increases with increasing relative density. All produced specimens have a smaller material volume than their theoretical volume value, while the percentage change in volume is up to 8.6%. The surface of specimens is larger compared with the theoretical values and the percentage change reaches up to 25.3%. The percentage of pores in the specimens increases with increasing relative density and reaches 6%. The acquired knowledge will be applied in the framework of research focused on the possibilities of using additive manufacturing to produce a skeleton of rubber-textile conveyor belts. This paper presents initial research on the possibility of replacing the carcass of rubber-textile belts with an additive technology use.</description><subject>3D printing</subject><subject>Belt conveyors</subject><subject>CAD-CAM systems industry</subject><subject>Carcasses</subject><subject>Computed tomography</subject><subject>Computer-aided design</subject><subject>Conveying machinery</subject><subject>Deviation</subject><subject>Industry 4.0</subject><subject>Knowledge acquisition</subject><subject>Manufacturing</subject><subject>Porous materials</subject><subject>Research methodology</subject><subject>Rubber</subject><subject>Rubber industry</subject><subject>Specific gravity</subject><subject>Textile fabrics</subject><subject>Textiles</subject><subject>Wall thickness</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1v3CAQxa2qVROlOfZaWeqlF6fDh405VamVJpESVWo2Z4TxeEtkwxbMKvvfl9WmUVI4gOD3Hsy8ovhI4IwxCV83ftrNpAECwNs3xTEFwSrOGnj7Yn9UnMb4AHnwummIeF8csZYCEYQdF_4uhVEbLC-2ekp6sd6Vfiwvd8HbobxbQjJLChjL0YfyVruU4Xxg3br8lfoeQ7XCx8VOWHbebXGXqe84LWWng9ExZuF93MO31gRfdasPxbtRTxFPn9aT4v7Hxaq7qm5-Xl535zeV4YQs1WB60TQ1GQahtYCBa0mJxlqIWuqaEQSGBkmDkmDb1kNNgXMQUvdcDq2k7KT4dvDdpH7GwaBbgp7UJthZh53y2qrXN87-Vmu_VQREC03Ls8OXJ4fg_ySMi5ptNDhN2qFPUVFJGOc1UJbRz_-hDz4Fl-vbU7SlEqjM1NmBWusJlXWjzw-bPAecrfEOx9xGdS6EZFxwqLOgOghy62IMOD5_n4Da569e5Z_5Ty9rfqb_pc3-Au3FrHY</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>Tkac, Jozef</creator><creator>Toth, Teodor</creator><creator>Fedorko, Gabriel</creator><creator>Molnar, Vieroslav</creator><creator>Dovica, Miroslav</creator><creator>Samborski, Sylwester</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8104-0914</orcidid><orcidid>https://orcid.org/0000-0002-2013-2305</orcidid><orcidid>https://orcid.org/0000-0003-1086-9511</orcidid><orcidid>https://orcid.org/0000-0003-4182-4033</orcidid><orcidid>https://orcid.org/0000-0002-5187-5283</orcidid><orcidid>https://orcid.org/0000-0002-3524-3200</orcidid></search><sort><creationdate>20231222</creationdate><title>Surface Evaluation of Gyroid Structures for Manufacturing Rubber-Textile Conveyor Belt Carcasses Using Micro-CT</title><author>Tkac, Jozef ; Toth, Teodor ; Fedorko, Gabriel ; Molnar, Vieroslav ; Dovica, Miroslav ; Samborski, Sylwester</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-dcb76651dd7aa70d4a921ae57759a531e03ece16e91e885d52044079ab49d8923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Belt conveyors</topic><topic>CAD-CAM systems industry</topic><topic>Carcasses</topic><topic>Computed tomography</topic><topic>Computer-aided design</topic><topic>Conveying machinery</topic><topic>Deviation</topic><topic>Industry 4.0</topic><topic>Knowledge acquisition</topic><topic>Manufacturing</topic><topic>Porous materials</topic><topic>Research methodology</topic><topic>Rubber</topic><topic>Rubber industry</topic><topic>Specific gravity</topic><topic>Textile fabrics</topic><topic>Textiles</topic><topic>Wall thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tkac, Jozef</creatorcontrib><creatorcontrib>Toth, Teodor</creatorcontrib><creatorcontrib>Fedorko, Gabriel</creatorcontrib><creatorcontrib>Molnar, Vieroslav</creatorcontrib><creatorcontrib>Dovica, Miroslav</creatorcontrib><creatorcontrib>Samborski, Sylwester</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tkac, Jozef</au><au>Toth, Teodor</au><au>Fedorko, Gabriel</au><au>Molnar, Vieroslav</au><au>Dovica, Miroslav</au><au>Samborski, Sylwester</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Evaluation of Gyroid Structures for Manufacturing Rubber-Textile Conveyor Belt Carcasses Using Micro-CT</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-12-22</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>48</spage><pages>48-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Gyroid structures are among the most widely used three-dimensional elements produced by various additive manufacturing technologies. This paper focuses on a metrological analysis of Flexfill 92A material specimens with a relative density (25 to 85%) using industrial computer tomography. The results show that for a given structure, the best method is to use surface determination with the closure of internal defects in the material. The analysis implies that the smallest deviations of the specimens' external dimensions were achieved with respect to the CAD model at the highest relative densities. The wall thickness shows the smallest percentage change of 0.5685 at 45% relative density and the largest at 25% and 85% relative density. The nominal-actual comparison of manufactured specimens to the CAD model shows the smallest cumulative deviation of 0.209 mm at 90% and 25% relative density, while it slightly increases with increasing relative density. All produced specimens have a smaller material volume than their theoretical volume value, while the percentage change in volume is up to 8.6%. The surface of specimens is larger compared with the theoretical values and the percentage change reaches up to 25.3%. The percentage of pores in the specimens increases with increasing relative density and reaches 6%. The acquired knowledge will be applied in the framework of research focused on the possibilities of using additive manufacturing to produce a skeleton of rubber-textile conveyor belts. This paper presents initial research on the possibility of replacing the carcass of rubber-textile belts with an additive technology use.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38201713</pmid><doi>10.3390/polym16010048</doi><orcidid>https://orcid.org/0000-0002-8104-0914</orcidid><orcidid>https://orcid.org/0000-0002-2013-2305</orcidid><orcidid>https://orcid.org/0000-0003-1086-9511</orcidid><orcidid>https://orcid.org/0000-0003-4182-4033</orcidid><orcidid>https://orcid.org/0000-0002-5187-5283</orcidid><orcidid>https://orcid.org/0000-0002-3524-3200</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2023-12, Vol.16 (1), p.48
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780684
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 3D printing
Belt conveyors
CAD-CAM systems industry
Carcasses
Computed tomography
Computer-aided design
Conveying machinery
Deviation
Industry 4.0
Knowledge acquisition
Manufacturing
Porous materials
Research methodology
Rubber
Rubber industry
Specific gravity
Textile fabrics
Textiles
Wall thickness
title Surface Evaluation of Gyroid Structures for Manufacturing Rubber-Textile Conveyor Belt Carcasses Using Micro-CT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Evaluation%20of%20Gyroid%20Structures%20for%20Manufacturing%20Rubber-Textile%20Conveyor%20Belt%20Carcasses%20Using%20Micro-CT&rft.jtitle=Polymers&rft.au=Tkac,%20Jozef&rft.date=2023-12-22&rft.volume=16&rft.issue=1&rft.spage=48&rft.pages=48-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16010048&rft_dat=%3Cgale_pubme%3EA779347405%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912829029&rft_id=info:pmid/38201713&rft_galeid=A779347405&rfr_iscdi=true