Theoretical and Experimental Studies of the Shock-Compressed Gas Parameters in the Welding Gap

This work is devoted to the study of the processes that take place in the welding gap during explosive welding (EW). In the welding gap, when plates collide, a shock-compressed gas (SCG) region is formed, which moves at supersonic speed and has a high temperature that can affect the quality of the w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-01, Vol.17 (1), p.265
Hauptverfasser: Malakhov, Andrey, Denisov, Igor, Niyozbekov, Nemat, Saikov, Ivan, Shakhray, Denis, Sosikov, Vasily, Emelyanov, Andrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 265
container_title Materials
container_volume 17
creator Malakhov, Andrey
Denisov, Igor
Niyozbekov, Nemat
Saikov, Ivan
Shakhray, Denis
Sosikov, Vasily
Emelyanov, Andrey
description This work is devoted to the study of the processes that take place in the welding gap during explosive welding (EW). In the welding gap, when plates collide, a shock-compressed gas (SCG) region is formed, which moves at supersonic speed and has a high temperature that can affect the quality of the weld joint. Therefore, this work focuses on a detailed study of the parameters of the SCG. A complex method of determining the SCG parameters included: determination of the detonation velocity using electrical contact probes, ceramic probes, and an oscilloscope; calculation of the SCG parameters; high-speed photography of the SCG region; measurement of the SCG temperature using optical pyrometry. As a result, it was found that the head front of the SCG region moved ahead of the collision point at a velocity of 3000 ± 100 m/s, while the collision point moved with a velocity of 2500 m/s. The calculation of the SCG temperature showed that the gas was heated up to 2832 K by the shock compression, while the measured temperature was in the range of 4100-4400 K. This is presumably due to the fact that small metal particles that broke off from the welded surfaces transferred their heat to the SCG region. Thus, the results of this study can be used to optimize the EW parameters and improve the weld joint quality.
doi_str_mv 10.3390/ma17010265
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779346022</galeid><sourcerecordid>A779346022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-cb6371e281c48b76be574b2bd3154938beeb4eb3d76aa6364aebd47487d1b5083</originalsourceid><addsrcrecordid>eNpdkV1rFTEQhoMottTe-ANkwRspbM3XSbJXUg5tFQoKrXhnyMfsOam7yZrsiv335nhqrSYXGWaeeTMvg9BLgk8Z6_Db0RCJCaZi9QQdkq4TLek4f_ooPkDHpdziehgjinbP0QFTFHNC5CH6erOFlGEOzgyNib45_zlBDiPEuSau58UHKE3qm3kLzfU2uW_tOo1ThlLAN5emNJ9MNiPMkEsT4m_sCww-xE2tTi_Qs94MBY7v3yP0-eL8Zv2-vfp4-WF9dtU6zsXcOiuYJEAVcVxZKSysJLfUekZWvGPKAlgOlnkpjBFMcAPWc8mV9MSusGJH6N1ed1rsCN7V8bMZ9FSdmHynkwn630oMW71JPzTBUmHKRFV4c6-Q0_cFyqzHUBwMg4mQlqJpRxjnkkhZ0df_obdpybH621FUqOppN9LpntqYAXSIfaofu3o9jMGlCH2o-TMpO8YFprQ2nOwbXE6lZOgfxidY73at_-66wq8eG35A_2yW_QIZPKOa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912684468</pqid></control><display><type>article</type><title>Theoretical and Experimental Studies of the Shock-Compressed Gas Parameters in the Welding Gap</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Malakhov, Andrey ; Denisov, Igor ; Niyozbekov, Nemat ; Saikov, Ivan ; Shakhray, Denis ; Sosikov, Vasily ; Emelyanov, Andrey</creator><creatorcontrib>Malakhov, Andrey ; Denisov, Igor ; Niyozbekov, Nemat ; Saikov, Ivan ; Shakhray, Denis ; Sosikov, Vasily ; Emelyanov, Andrey</creatorcontrib><description>This work is devoted to the study of the processes that take place in the welding gap during explosive welding (EW). In the welding gap, when plates collide, a shock-compressed gas (SCG) region is formed, which moves at supersonic speed and has a high temperature that can affect the quality of the weld joint. Therefore, this work focuses on a detailed study of the parameters of the SCG. A complex method of determining the SCG parameters included: determination of the detonation velocity using electrical contact probes, ceramic probes, and an oscilloscope; calculation of the SCG parameters; high-speed photography of the SCG region; measurement of the SCG temperature using optical pyrometry. As a result, it was found that the head front of the SCG region moved ahead of the collision point at a velocity of 3000 ± 100 m/s, while the collision point moved with a velocity of 2500 m/s. The calculation of the SCG temperature showed that the gas was heated up to 2832 K by the shock compression, while the measured temperature was in the range of 4100-4400 K. This is presumably due to the fact that small metal particles that broke off from the welded surfaces transferred their heat to the SCG region. Thus, the results of this study can be used to optimize the EW parameters and improve the weld joint quality.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17010265</identifier><identifier>PMID: 38204117</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Cameras ; Chemical elements ; Compressed gas ; Detonation ; Electric contacts ; Explosive welding ; Explosives ; High speed photography ; High temperature ; Mathematical analysis ; Metal particles ; Metals ; Pyrometry ; Research methodology ; Supersonic speed ; Velocity ; Welded joints ; Welding ; Welding parameters</subject><ispartof>Materials, 2024-01, Vol.17 (1), p.265</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-cb6371e281c48b76be574b2bd3154938beeb4eb3d76aa6364aebd47487d1b5083</citedby><cites>FETCH-LOGICAL-c446t-cb6371e281c48b76be574b2bd3154938beeb4eb3d76aa6364aebd47487d1b5083</cites><orcidid>0000-0003-1812-2930 ; 0000-0003-1473-2854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780236/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780236/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38204117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malakhov, Andrey</creatorcontrib><creatorcontrib>Denisov, Igor</creatorcontrib><creatorcontrib>Niyozbekov, Nemat</creatorcontrib><creatorcontrib>Saikov, Ivan</creatorcontrib><creatorcontrib>Shakhray, Denis</creatorcontrib><creatorcontrib>Sosikov, Vasily</creatorcontrib><creatorcontrib>Emelyanov, Andrey</creatorcontrib><title>Theoretical and Experimental Studies of the Shock-Compressed Gas Parameters in the Welding Gap</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This work is devoted to the study of the processes that take place in the welding gap during explosive welding (EW). In the welding gap, when plates collide, a shock-compressed gas (SCG) region is formed, which moves at supersonic speed and has a high temperature that can affect the quality of the weld joint. Therefore, this work focuses on a detailed study of the parameters of the SCG. A complex method of determining the SCG parameters included: determination of the detonation velocity using electrical contact probes, ceramic probes, and an oscilloscope; calculation of the SCG parameters; high-speed photography of the SCG region; measurement of the SCG temperature using optical pyrometry. As a result, it was found that the head front of the SCG region moved ahead of the collision point at a velocity of 3000 ± 100 m/s, while the collision point moved with a velocity of 2500 m/s. The calculation of the SCG temperature showed that the gas was heated up to 2832 K by the shock compression, while the measured temperature was in the range of 4100-4400 K. This is presumably due to the fact that small metal particles that broke off from the welded surfaces transferred their heat to the SCG region. Thus, the results of this study can be used to optimize the EW parameters and improve the weld joint quality.</description><subject>Alloys</subject><subject>Cameras</subject><subject>Chemical elements</subject><subject>Compressed gas</subject><subject>Detonation</subject><subject>Electric contacts</subject><subject>Explosive welding</subject><subject>Explosives</subject><subject>High speed photography</subject><subject>High temperature</subject><subject>Mathematical analysis</subject><subject>Metal particles</subject><subject>Metals</subject><subject>Pyrometry</subject><subject>Research methodology</subject><subject>Supersonic speed</subject><subject>Velocity</subject><subject>Welded joints</subject><subject>Welding</subject><subject>Welding parameters</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1rFTEQhoMottTe-ANkwRspbM3XSbJXUg5tFQoKrXhnyMfsOam7yZrsiv335nhqrSYXGWaeeTMvg9BLgk8Z6_Db0RCJCaZi9QQdkq4TLek4f_ooPkDHpdziehgjinbP0QFTFHNC5CH6erOFlGEOzgyNib45_zlBDiPEuSau58UHKE3qm3kLzfU2uW_tOo1ThlLAN5emNJ9MNiPMkEsT4m_sCww-xE2tTi_Qs94MBY7v3yP0-eL8Zv2-vfp4-WF9dtU6zsXcOiuYJEAVcVxZKSysJLfUekZWvGPKAlgOlnkpjBFMcAPWc8mV9MSusGJH6N1ed1rsCN7V8bMZ9FSdmHynkwn630oMW71JPzTBUmHKRFV4c6-Q0_cFyqzHUBwMg4mQlqJpRxjnkkhZ0df_obdpybH621FUqOppN9LpntqYAXSIfaofu3o9jMGlCH2o-TMpO8YFprQ2nOwbXE6lZOgfxidY73at_-66wq8eG35A_2yW_QIZPKOa</recordid><startdate>20240104</startdate><enddate>20240104</enddate><creator>Malakhov, Andrey</creator><creator>Denisov, Igor</creator><creator>Niyozbekov, Nemat</creator><creator>Saikov, Ivan</creator><creator>Shakhray, Denis</creator><creator>Sosikov, Vasily</creator><creator>Emelyanov, Andrey</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1812-2930</orcidid><orcidid>https://orcid.org/0000-0003-1473-2854</orcidid></search><sort><creationdate>20240104</creationdate><title>Theoretical and Experimental Studies of the Shock-Compressed Gas Parameters in the Welding Gap</title><author>Malakhov, Andrey ; Denisov, Igor ; Niyozbekov, Nemat ; Saikov, Ivan ; Shakhray, Denis ; Sosikov, Vasily ; Emelyanov, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-cb6371e281c48b76be574b2bd3154938beeb4eb3d76aa6364aebd47487d1b5083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Cameras</topic><topic>Chemical elements</topic><topic>Compressed gas</topic><topic>Detonation</topic><topic>Electric contacts</topic><topic>Explosive welding</topic><topic>Explosives</topic><topic>High speed photography</topic><topic>High temperature</topic><topic>Mathematical analysis</topic><topic>Metal particles</topic><topic>Metals</topic><topic>Pyrometry</topic><topic>Research methodology</topic><topic>Supersonic speed</topic><topic>Velocity</topic><topic>Welded joints</topic><topic>Welding</topic><topic>Welding parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malakhov, Andrey</creatorcontrib><creatorcontrib>Denisov, Igor</creatorcontrib><creatorcontrib>Niyozbekov, Nemat</creatorcontrib><creatorcontrib>Saikov, Ivan</creatorcontrib><creatorcontrib>Shakhray, Denis</creatorcontrib><creatorcontrib>Sosikov, Vasily</creatorcontrib><creatorcontrib>Emelyanov, Andrey</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malakhov, Andrey</au><au>Denisov, Igor</au><au>Niyozbekov, Nemat</au><au>Saikov, Ivan</au><au>Shakhray, Denis</au><au>Sosikov, Vasily</au><au>Emelyanov, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and Experimental Studies of the Shock-Compressed Gas Parameters in the Welding Gap</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-01-04</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>265</spage><pages>265-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This work is devoted to the study of the processes that take place in the welding gap during explosive welding (EW). In the welding gap, when plates collide, a shock-compressed gas (SCG) region is formed, which moves at supersonic speed and has a high temperature that can affect the quality of the weld joint. Therefore, this work focuses on a detailed study of the parameters of the SCG. A complex method of determining the SCG parameters included: determination of the detonation velocity using electrical contact probes, ceramic probes, and an oscilloscope; calculation of the SCG parameters; high-speed photography of the SCG region; measurement of the SCG temperature using optical pyrometry. As a result, it was found that the head front of the SCG region moved ahead of the collision point at a velocity of 3000 ± 100 m/s, while the collision point moved with a velocity of 2500 m/s. The calculation of the SCG temperature showed that the gas was heated up to 2832 K by the shock compression, while the measured temperature was in the range of 4100-4400 K. This is presumably due to the fact that small metal particles that broke off from the welded surfaces transferred their heat to the SCG region. Thus, the results of this study can be used to optimize the EW parameters and improve the weld joint quality.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38204117</pmid><doi>10.3390/ma17010265</doi><orcidid>https://orcid.org/0000-0003-1812-2930</orcidid><orcidid>https://orcid.org/0000-0003-1473-2854</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-01, Vol.17 (1), p.265
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780236
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Alloys
Cameras
Chemical elements
Compressed gas
Detonation
Electric contacts
Explosive welding
Explosives
High speed photography
High temperature
Mathematical analysis
Metal particles
Metals
Pyrometry
Research methodology
Supersonic speed
Velocity
Welded joints
Welding
Welding parameters
title Theoretical and Experimental Studies of the Shock-Compressed Gas Parameters in the Welding Gap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20Experimental%20Studies%20of%20the%20Shock-Compressed%20Gas%20Parameters%20in%20the%20Welding%20Gap&rft.jtitle=Materials&rft.au=Malakhov,%20Andrey&rft.date=2024-01-04&rft.volume=17&rft.issue=1&rft.spage=265&rft.pages=265-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17010265&rft_dat=%3Cgale_pubme%3EA779346022%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912684468&rft_id=info:pmid/38204117&rft_galeid=A779346022&rfr_iscdi=true