Study of Anticorrosion and Antifouling Properties of a Cu-Doped TiO2 Coating Fabricated via Micro-Arc Oxidation

As a promising material for petroleum industrial applications, titanium (Ti) and its alloys receive wide attention due to their outstanding physicochemical properties. However, the harsh industrial environment requires an antifouling surface with a desired corrosion resistance for Ti and its alloys....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-01, Vol.17 (1), p.217
Hauptverfasser: Hu, Pengfei, Zhu, Liyang, Tian, Chenghuan, Xu, Gege, Zhang, Xinxin, Cai, Guangyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 217
container_title Materials
container_volume 17
creator Hu, Pengfei
Zhu, Liyang
Tian, Chenghuan
Xu, Gege
Zhang, Xinxin
Cai, Guangyi
description As a promising material for petroleum industrial applications, titanium (Ti) and its alloys receive wide attention due to their outstanding physicochemical properties. However, the harsh industrial environment requires an antifouling surface with a desired corrosion resistance for Ti and its alloys. In order to achieve the desired antifouling properties, micro-arc oxidation (MAO) was used to prepare a Cu-doped TiO2 coating. The microstructure of the Cu-doped TiO2 coating was investigated by TF-XRD, SEM, and other characterization techniques, and its antifouling and anticorrosion properties were also tested. The results show the effects of the incorporation of Cu (~1.73 wt.%) into TiO2 to form a Cu-doped TiO2, namely, a Ti–Cu coating. The porosity (~4.8%) and average pore size (~0.42 μm) of the Ti–Cu coating are smaller than the porosity (~5.6%) and average pore size (~0.66 μm) of Ti–blank coating. In addition, there is a significant reduction in the amount of SRB adhesion on the Ti–Cu coating compared to the Ti–blank coating under the same conditions, while there is little difference in corrosion resistance between the two coatings. There, the addition of copper helps to improve the fouling resistance of TiO2 coatings without compromising their corrosion resistance. Our work provides a practical method to improve the antifouling function of metallic Ti substrates, which could promote the application of Ti in the petroleum industry.
doi_str_mv 10.3390/ma17010217
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912681354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-1a29aaf37f11e33e5968ddccbdf613ee097c058ace9b7fdfebb5063bbbac39f53</originalsourceid><addsrcrecordid>eNpdkVtLHTEUhUNpqWJ98RcE-lIKo0n23PJUDsd6AcspVJ_Dzk0jc5LTZEbqv3emir3sl2xWPlay9yLkiLNjAMlOtsg7xpng3Ruyz6VsKy7r-u1f_R45LOWezQXAeyHfkz3oBatZJ_ZJ-jFO9pEmT1dxDCblnEpIkWK0vxWfpiHEW_o9p53LY3BlYZGup-p0Viy9DhtB1wnHhTpDnYPBcdYfAtJvweRUrbKhm1_BzkiKH8g7j0Nxhy_nAbk5-3q9vqiuNueX69VVZaCGseIoJKKHznPuAFwj295aY7T1LQfnmOwMa3o0TurOW--0blgLWms0IH0DB-TLs-9u0ltnjYtjxkHtcthiflQJg_r3JoY7dZseFGddzxivZ4dPLw45_ZxcGdU2FOOGAaNLU1FCcqjrjonlsY__ofdpynGeb6FE23NoFsPPz9S8lFKy86-_4UwtWao_WcITieGRDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912681354</pqid></control><display><type>article</type><title>Study of Anticorrosion and Antifouling Properties of a Cu-Doped TiO2 Coating Fabricated via Micro-Arc Oxidation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Hu, Pengfei ; Zhu, Liyang ; Tian, Chenghuan ; Xu, Gege ; Zhang, Xinxin ; Cai, Guangyi</creator><creatorcontrib>Hu, Pengfei ; Zhu, Liyang ; Tian, Chenghuan ; Xu, Gege ; Zhang, Xinxin ; Cai, Guangyi</creatorcontrib><description>As a promising material for petroleum industrial applications, titanium (Ti) and its alloys receive wide attention due to their outstanding physicochemical properties. However, the harsh industrial environment requires an antifouling surface with a desired corrosion resistance for Ti and its alloys. In order to achieve the desired antifouling properties, micro-arc oxidation (MAO) was used to prepare a Cu-doped TiO2 coating. The microstructure of the Cu-doped TiO2 coating was investigated by TF-XRD, SEM, and other characterization techniques, and its antifouling and anticorrosion properties were also tested. The results show the effects of the incorporation of Cu (~1.73 wt.%) into TiO2 to form a Cu-doped TiO2, namely, a Ti–Cu coating. The porosity (~4.8%) and average pore size (~0.42 μm) of the Ti–Cu coating are smaller than the porosity (~5.6%) and average pore size (~0.66 μm) of Ti–blank coating. In addition, there is a significant reduction in the amount of SRB adhesion on the Ti–Cu coating compared to the Ti–blank coating under the same conditions, while there is little difference in corrosion resistance between the two coatings. There, the addition of copper helps to improve the fouling resistance of TiO2 coatings without compromising their corrosion resistance. Our work provides a practical method to improve the antifouling function of metallic Ti substrates, which could promote the application of Ti in the petroleum industry.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17010217</identifier><identifier>PMID: 38204072</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antifouling coatings ; Antimicrobial agents ; Biofilms ; Ceramic glazes ; Contact angle ; Copper ; Corrosion prevention ; Corrosion resistance ; Crude oil ; Electric fields ; Electrolytes ; Industrial applications ; Microorganisms ; Oxidation ; Petroleum industry ; Pore size ; Porosity ; Protective coatings ; Substrates ; Titanium ; Titanium dioxide</subject><ispartof>Materials, 2024-01, Vol.17 (1), p.217</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-1a29aaf37f11e33e5968ddccbdf613ee097c058ace9b7fdfebb5063bbbac39f53</cites><orcidid>0000-0002-8354-5086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780014/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780014/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><creatorcontrib>Hu, Pengfei</creatorcontrib><creatorcontrib>Zhu, Liyang</creatorcontrib><creatorcontrib>Tian, Chenghuan</creatorcontrib><creatorcontrib>Xu, Gege</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><creatorcontrib>Cai, Guangyi</creatorcontrib><title>Study of Anticorrosion and Antifouling Properties of a Cu-Doped TiO2 Coating Fabricated via Micro-Arc Oxidation</title><title>Materials</title><description>As a promising material for petroleum industrial applications, titanium (Ti) and its alloys receive wide attention due to their outstanding physicochemical properties. However, the harsh industrial environment requires an antifouling surface with a desired corrosion resistance for Ti and its alloys. In order to achieve the desired antifouling properties, micro-arc oxidation (MAO) was used to prepare a Cu-doped TiO2 coating. The microstructure of the Cu-doped TiO2 coating was investigated by TF-XRD, SEM, and other characterization techniques, and its antifouling and anticorrosion properties were also tested. The results show the effects of the incorporation of Cu (~1.73 wt.%) into TiO2 to form a Cu-doped TiO2, namely, a Ti–Cu coating. The porosity (~4.8%) and average pore size (~0.42 μm) of the Ti–Cu coating are smaller than the porosity (~5.6%) and average pore size (~0.66 μm) of Ti–blank coating. In addition, there is a significant reduction in the amount of SRB adhesion on the Ti–Cu coating compared to the Ti–blank coating under the same conditions, while there is little difference in corrosion resistance between the two coatings. There, the addition of copper helps to improve the fouling resistance of TiO2 coatings without compromising their corrosion resistance. Our work provides a practical method to improve the antifouling function of metallic Ti substrates, which could promote the application of Ti in the petroleum industry.</description><subject>Antifouling coatings</subject><subject>Antimicrobial agents</subject><subject>Biofilms</subject><subject>Ceramic glazes</subject><subject>Contact angle</subject><subject>Copper</subject><subject>Corrosion prevention</subject><subject>Corrosion resistance</subject><subject>Crude oil</subject><subject>Electric fields</subject><subject>Electrolytes</subject><subject>Industrial applications</subject><subject>Microorganisms</subject><subject>Oxidation</subject><subject>Petroleum industry</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Protective coatings</subject><subject>Substrates</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVtLHTEUhUNpqWJ98RcE-lIKo0n23PJUDsd6AcspVJ_Dzk0jc5LTZEbqv3emir3sl2xWPlay9yLkiLNjAMlOtsg7xpng3Ruyz6VsKy7r-u1f_R45LOWezQXAeyHfkz3oBatZJ_ZJ-jFO9pEmT1dxDCblnEpIkWK0vxWfpiHEW_o9p53LY3BlYZGup-p0Viy9DhtB1wnHhTpDnYPBcdYfAtJvweRUrbKhm1_BzkiKH8g7j0Nxhy_nAbk5-3q9vqiuNueX69VVZaCGseIoJKKHznPuAFwj295aY7T1LQfnmOwMa3o0TurOW--0blgLWms0IH0DB-TLs-9u0ltnjYtjxkHtcthiflQJg_r3JoY7dZseFGddzxivZ4dPLw45_ZxcGdU2FOOGAaNLU1FCcqjrjonlsY__ofdpynGeb6FE23NoFsPPz9S8lFKy86-_4UwtWao_WcITieGRDg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Hu, Pengfei</creator><creator>Zhu, Liyang</creator><creator>Tian, Chenghuan</creator><creator>Xu, Gege</creator><creator>Zhang, Xinxin</creator><creator>Cai, Guangyi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8354-5086</orcidid></search><sort><creationdate>20240101</creationdate><title>Study of Anticorrosion and Antifouling Properties of a Cu-Doped TiO2 Coating Fabricated via Micro-Arc Oxidation</title><author>Hu, Pengfei ; Zhu, Liyang ; Tian, Chenghuan ; Xu, Gege ; Zhang, Xinxin ; Cai, Guangyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-1a29aaf37f11e33e5968ddccbdf613ee097c058ace9b7fdfebb5063bbbac39f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antifouling coatings</topic><topic>Antimicrobial agents</topic><topic>Biofilms</topic><topic>Ceramic glazes</topic><topic>Contact angle</topic><topic>Copper</topic><topic>Corrosion prevention</topic><topic>Corrosion resistance</topic><topic>Crude oil</topic><topic>Electric fields</topic><topic>Electrolytes</topic><topic>Industrial applications</topic><topic>Microorganisms</topic><topic>Oxidation</topic><topic>Petroleum industry</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Protective coatings</topic><topic>Substrates</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Pengfei</creatorcontrib><creatorcontrib>Zhu, Liyang</creatorcontrib><creatorcontrib>Tian, Chenghuan</creatorcontrib><creatorcontrib>Xu, Gege</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><creatorcontrib>Cai, Guangyi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Pengfei</au><au>Zhu, Liyang</au><au>Tian, Chenghuan</au><au>Xu, Gege</au><au>Zhang, Xinxin</au><au>Cai, Guangyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Anticorrosion and Antifouling Properties of a Cu-Doped TiO2 Coating Fabricated via Micro-Arc Oxidation</atitle><jtitle>Materials</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>217</spage><pages>217-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>As a promising material for petroleum industrial applications, titanium (Ti) and its alloys receive wide attention due to their outstanding physicochemical properties. However, the harsh industrial environment requires an antifouling surface with a desired corrosion resistance for Ti and its alloys. In order to achieve the desired antifouling properties, micro-arc oxidation (MAO) was used to prepare a Cu-doped TiO2 coating. The microstructure of the Cu-doped TiO2 coating was investigated by TF-XRD, SEM, and other characterization techniques, and its antifouling and anticorrosion properties were also tested. The results show the effects of the incorporation of Cu (~1.73 wt.%) into TiO2 to form a Cu-doped TiO2, namely, a Ti–Cu coating. The porosity (~4.8%) and average pore size (~0.42 μm) of the Ti–Cu coating are smaller than the porosity (~5.6%) and average pore size (~0.66 μm) of Ti–blank coating. In addition, there is a significant reduction in the amount of SRB adhesion on the Ti–Cu coating compared to the Ti–blank coating under the same conditions, while there is little difference in corrosion resistance between the two coatings. There, the addition of copper helps to improve the fouling resistance of TiO2 coatings without compromising their corrosion resistance. Our work provides a practical method to improve the antifouling function of metallic Ti substrates, which could promote the application of Ti in the petroleum industry.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>38204072</pmid><doi>10.3390/ma17010217</doi><orcidid>https://orcid.org/0000-0002-8354-5086</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-01, Vol.17 (1), p.217
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780014
source MDPI - Multidisciplinary Digital Publishing Institute; Full-Text Journals in Chemistry (Open access); PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects Antifouling coatings
Antimicrobial agents
Biofilms
Ceramic glazes
Contact angle
Copper
Corrosion prevention
Corrosion resistance
Crude oil
Electric fields
Electrolytes
Industrial applications
Microorganisms
Oxidation
Petroleum industry
Pore size
Porosity
Protective coatings
Substrates
Titanium
Titanium dioxide
title Study of Anticorrosion and Antifouling Properties of a Cu-Doped TiO2 Coating Fabricated via Micro-Arc Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Anticorrosion%20and%20Antifouling%20Properties%20of%20a%20Cu-Doped%20TiO2%20Coating%20Fabricated%20via%20Micro-Arc%20Oxidation&rft.jtitle=Materials&rft.au=Hu,%20Pengfei&rft.date=2024-01-01&rft.volume=17&rft.issue=1&rft.spage=217&rft.pages=217-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17010217&rft_dat=%3Cproquest_pubme%3E2912681354%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912681354&rft_id=info:pmid/38204072&rfr_iscdi=true