Study of Anticorrosion and Antifouling Properties of a Cu-Doped TiO2 Coating Fabricated via Micro-Arc Oxidation
As a promising material for petroleum industrial applications, titanium (Ti) and its alloys receive wide attention due to their outstanding physicochemical properties. However, the harsh industrial environment requires an antifouling surface with a desired corrosion resistance for Ti and its alloys....
Gespeichert in:
Veröffentlicht in: | Materials 2024-01, Vol.17 (1), p.217 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 217 |
container_title | Materials |
container_volume | 17 |
creator | Hu, Pengfei Zhu, Liyang Tian, Chenghuan Xu, Gege Zhang, Xinxin Cai, Guangyi |
description | As a promising material for petroleum industrial applications, titanium (Ti) and its alloys receive wide attention due to their outstanding physicochemical properties. However, the harsh industrial environment requires an antifouling surface with a desired corrosion resistance for Ti and its alloys. In order to achieve the desired antifouling properties, micro-arc oxidation (MAO) was used to prepare a Cu-doped TiO2 coating. The microstructure of the Cu-doped TiO2 coating was investigated by TF-XRD, SEM, and other characterization techniques, and its antifouling and anticorrosion properties were also tested. The results show the effects of the incorporation of Cu (~1.73 wt.%) into TiO2 to form a Cu-doped TiO2, namely, a Ti–Cu coating. The porosity (~4.8%) and average pore size (~0.42 μm) of the Ti–Cu coating are smaller than the porosity (~5.6%) and average pore size (~0.66 μm) of Ti–blank coating. In addition, there is a significant reduction in the amount of SRB adhesion on the Ti–Cu coating compared to the Ti–blank coating under the same conditions, while there is little difference in corrosion resistance between the two coatings. There, the addition of copper helps to improve the fouling resistance of TiO2 coatings without compromising their corrosion resistance. Our work provides a practical method to improve the antifouling function of metallic Ti substrates, which could promote the application of Ti in the petroleum industry. |
doi_str_mv | 10.3390/ma17010217 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912681354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-1a29aaf37f11e33e5968ddccbdf613ee097c058ace9b7fdfebb5063bbbac39f53</originalsourceid><addsrcrecordid>eNpdkVtLHTEUhUNpqWJ98RcE-lIKo0n23PJUDsd6AcspVJ_Dzk0jc5LTZEbqv3emir3sl2xWPlay9yLkiLNjAMlOtsg7xpng3Ruyz6VsKy7r-u1f_R45LOWezQXAeyHfkz3oBatZJ_ZJ-jFO9pEmT1dxDCblnEpIkWK0vxWfpiHEW_o9p53LY3BlYZGup-p0Viy9DhtB1wnHhTpDnYPBcdYfAtJvweRUrbKhm1_BzkiKH8g7j0Nxhy_nAbk5-3q9vqiuNueX69VVZaCGseIoJKKHznPuAFwj295aY7T1LQfnmOwMa3o0TurOW--0blgLWms0IH0DB-TLs-9u0ltnjYtjxkHtcthiflQJg_r3JoY7dZseFGddzxivZ4dPLw45_ZxcGdU2FOOGAaNLU1FCcqjrjonlsY__ofdpynGeb6FE23NoFsPPz9S8lFKy86-_4UwtWao_WcITieGRDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912681354</pqid></control><display><type>article</type><title>Study of Anticorrosion and Antifouling Properties of a Cu-Doped TiO2 Coating Fabricated via Micro-Arc Oxidation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Hu, Pengfei ; Zhu, Liyang ; Tian, Chenghuan ; Xu, Gege ; Zhang, Xinxin ; Cai, Guangyi</creator><creatorcontrib>Hu, Pengfei ; Zhu, Liyang ; Tian, Chenghuan ; Xu, Gege ; Zhang, Xinxin ; Cai, Guangyi</creatorcontrib><description>As a promising material for petroleum industrial applications, titanium (Ti) and its alloys receive wide attention due to their outstanding physicochemical properties. However, the harsh industrial environment requires an antifouling surface with a desired corrosion resistance for Ti and its alloys. In order to achieve the desired antifouling properties, micro-arc oxidation (MAO) was used to prepare a Cu-doped TiO2 coating. The microstructure of the Cu-doped TiO2 coating was investigated by TF-XRD, SEM, and other characterization techniques, and its antifouling and anticorrosion properties were also tested. The results show the effects of the incorporation of Cu (~1.73 wt.%) into TiO2 to form a Cu-doped TiO2, namely, a Ti–Cu coating. The porosity (~4.8%) and average pore size (~0.42 μm) of the Ti–Cu coating are smaller than the porosity (~5.6%) and average pore size (~0.66 μm) of Ti–blank coating. In addition, there is a significant reduction in the amount of SRB adhesion on the Ti–Cu coating compared to the Ti–blank coating under the same conditions, while there is little difference in corrosion resistance between the two coatings. There, the addition of copper helps to improve the fouling resistance of TiO2 coatings without compromising their corrosion resistance. Our work provides a practical method to improve the antifouling function of metallic Ti substrates, which could promote the application of Ti in the petroleum industry.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17010217</identifier><identifier>PMID: 38204072</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antifouling coatings ; Antimicrobial agents ; Biofilms ; Ceramic glazes ; Contact angle ; Copper ; Corrosion prevention ; Corrosion resistance ; Crude oil ; Electric fields ; Electrolytes ; Industrial applications ; Microorganisms ; Oxidation ; Petroleum industry ; Pore size ; Porosity ; Protective coatings ; Substrates ; Titanium ; Titanium dioxide</subject><ispartof>Materials, 2024-01, Vol.17 (1), p.217</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-1a29aaf37f11e33e5968ddccbdf613ee097c058ace9b7fdfebb5063bbbac39f53</cites><orcidid>0000-0002-8354-5086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780014/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780014/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><creatorcontrib>Hu, Pengfei</creatorcontrib><creatorcontrib>Zhu, Liyang</creatorcontrib><creatorcontrib>Tian, Chenghuan</creatorcontrib><creatorcontrib>Xu, Gege</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><creatorcontrib>Cai, Guangyi</creatorcontrib><title>Study of Anticorrosion and Antifouling Properties of a Cu-Doped TiO2 Coating Fabricated via Micro-Arc Oxidation</title><title>Materials</title><description>As a promising material for petroleum industrial applications, titanium (Ti) and its alloys receive wide attention due to their outstanding physicochemical properties. However, the harsh industrial environment requires an antifouling surface with a desired corrosion resistance for Ti and its alloys. In order to achieve the desired antifouling properties, micro-arc oxidation (MAO) was used to prepare a Cu-doped TiO2 coating. The microstructure of the Cu-doped TiO2 coating was investigated by TF-XRD, SEM, and other characterization techniques, and its antifouling and anticorrosion properties were also tested. The results show the effects of the incorporation of Cu (~1.73 wt.%) into TiO2 to form a Cu-doped TiO2, namely, a Ti–Cu coating. The porosity (~4.8%) and average pore size (~0.42 μm) of the Ti–Cu coating are smaller than the porosity (~5.6%) and average pore size (~0.66 μm) of Ti–blank coating. In addition, there is a significant reduction in the amount of SRB adhesion on the Ti–Cu coating compared to the Ti–blank coating under the same conditions, while there is little difference in corrosion resistance between the two coatings. There, the addition of copper helps to improve the fouling resistance of TiO2 coatings without compromising their corrosion resistance. Our work provides a practical method to improve the antifouling function of metallic Ti substrates, which could promote the application of Ti in the petroleum industry.</description><subject>Antifouling coatings</subject><subject>Antimicrobial agents</subject><subject>Biofilms</subject><subject>Ceramic glazes</subject><subject>Contact angle</subject><subject>Copper</subject><subject>Corrosion prevention</subject><subject>Corrosion resistance</subject><subject>Crude oil</subject><subject>Electric fields</subject><subject>Electrolytes</subject><subject>Industrial applications</subject><subject>Microorganisms</subject><subject>Oxidation</subject><subject>Petroleum industry</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Protective coatings</subject><subject>Substrates</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVtLHTEUhUNpqWJ98RcE-lIKo0n23PJUDsd6AcspVJ_Dzk0jc5LTZEbqv3emir3sl2xWPlay9yLkiLNjAMlOtsg7xpng3Ruyz6VsKy7r-u1f_R45LOWezQXAeyHfkz3oBatZJ_ZJ-jFO9pEmT1dxDCblnEpIkWK0vxWfpiHEW_o9p53LY3BlYZGup-p0Viy9DhtB1wnHhTpDnYPBcdYfAtJvweRUrbKhm1_BzkiKH8g7j0Nxhy_nAbk5-3q9vqiuNueX69VVZaCGseIoJKKHznPuAFwj295aY7T1LQfnmOwMa3o0TurOW--0blgLWms0IH0DB-TLs-9u0ltnjYtjxkHtcthiflQJg_r3JoY7dZseFGddzxivZ4dPLw45_ZxcGdU2FOOGAaNLU1FCcqjrjonlsY__ofdpynGeb6FE23NoFsPPz9S8lFKy86-_4UwtWao_WcITieGRDg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Hu, Pengfei</creator><creator>Zhu, Liyang</creator><creator>Tian, Chenghuan</creator><creator>Xu, Gege</creator><creator>Zhang, Xinxin</creator><creator>Cai, Guangyi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8354-5086</orcidid></search><sort><creationdate>20240101</creationdate><title>Study of Anticorrosion and Antifouling Properties of a Cu-Doped TiO2 Coating Fabricated via Micro-Arc Oxidation</title><author>Hu, Pengfei ; Zhu, Liyang ; Tian, Chenghuan ; Xu, Gege ; Zhang, Xinxin ; Cai, Guangyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-1a29aaf37f11e33e5968ddccbdf613ee097c058ace9b7fdfebb5063bbbac39f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antifouling coatings</topic><topic>Antimicrobial agents</topic><topic>Biofilms</topic><topic>Ceramic glazes</topic><topic>Contact angle</topic><topic>Copper</topic><topic>Corrosion prevention</topic><topic>Corrosion resistance</topic><topic>Crude oil</topic><topic>Electric fields</topic><topic>Electrolytes</topic><topic>Industrial applications</topic><topic>Microorganisms</topic><topic>Oxidation</topic><topic>Petroleum industry</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Protective coatings</topic><topic>Substrates</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Pengfei</creatorcontrib><creatorcontrib>Zhu, Liyang</creatorcontrib><creatorcontrib>Tian, Chenghuan</creatorcontrib><creatorcontrib>Xu, Gege</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><creatorcontrib>Cai, Guangyi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Pengfei</au><au>Zhu, Liyang</au><au>Tian, Chenghuan</au><au>Xu, Gege</au><au>Zhang, Xinxin</au><au>Cai, Guangyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Anticorrosion and Antifouling Properties of a Cu-Doped TiO2 Coating Fabricated via Micro-Arc Oxidation</atitle><jtitle>Materials</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>217</spage><pages>217-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>As a promising material for petroleum industrial applications, titanium (Ti) and its alloys receive wide attention due to their outstanding physicochemical properties. However, the harsh industrial environment requires an antifouling surface with a desired corrosion resistance for Ti and its alloys. In order to achieve the desired antifouling properties, micro-arc oxidation (MAO) was used to prepare a Cu-doped TiO2 coating. The microstructure of the Cu-doped TiO2 coating was investigated by TF-XRD, SEM, and other characterization techniques, and its antifouling and anticorrosion properties were also tested. The results show the effects of the incorporation of Cu (~1.73 wt.%) into TiO2 to form a Cu-doped TiO2, namely, a Ti–Cu coating. The porosity (~4.8%) and average pore size (~0.42 μm) of the Ti–Cu coating are smaller than the porosity (~5.6%) and average pore size (~0.66 μm) of Ti–blank coating. In addition, there is a significant reduction in the amount of SRB adhesion on the Ti–Cu coating compared to the Ti–blank coating under the same conditions, while there is little difference in corrosion resistance between the two coatings. There, the addition of copper helps to improve the fouling resistance of TiO2 coatings without compromising their corrosion resistance. Our work provides a practical method to improve the antifouling function of metallic Ti substrates, which could promote the application of Ti in the petroleum industry.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>38204072</pmid><doi>10.3390/ma17010217</doi><orcidid>https://orcid.org/0000-0002-8354-5086</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-01, Vol.17 (1), p.217 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780014 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Full-Text Journals in Chemistry (Open access); PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Antifouling coatings Antimicrobial agents Biofilms Ceramic glazes Contact angle Copper Corrosion prevention Corrosion resistance Crude oil Electric fields Electrolytes Industrial applications Microorganisms Oxidation Petroleum industry Pore size Porosity Protective coatings Substrates Titanium Titanium dioxide |
title | Study of Anticorrosion and Antifouling Properties of a Cu-Doped TiO2 Coating Fabricated via Micro-Arc Oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Anticorrosion%20and%20Antifouling%20Properties%20of%20a%20Cu-Doped%20TiO2%20Coating%20Fabricated%20via%20Micro-Arc%20Oxidation&rft.jtitle=Materials&rft.au=Hu,%20Pengfei&rft.date=2024-01-01&rft.volume=17&rft.issue=1&rft.spage=217&rft.pages=217-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17010217&rft_dat=%3Cproquest_pubme%3E2912681354%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912681354&rft_id=info:pmid/38204072&rfr_iscdi=true |