Investigation of the Chemical Composition, Microstructure, Density, Microhardness, and Elastic Modulus of the New β Ti-50Nb-xMo Alloys for Biomedical Applications
β-type titanium alloys with a body-centered cubic structure are highly useful in orthopedics due to their low elastic modulus, lower than other commonly used alloys such as stainless steel and Co-Cr alloys. The formation of the β phase in titanium alloys is achieved through β-stabilizing elements su...
Gespeichert in:
Veröffentlicht in: | Materials 2024-01, Vol.17 (1), p.250 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 250 |
container_title | Materials |
container_volume | 17 |
creator | Martins Junior, José Roberto Severino Kuroda, Pedro Akira Bazaglia Grandini, Carlos Roberto |
description | β-type titanium alloys with a body-centered cubic structure are highly useful in orthopedics due to their low elastic modulus, lower than other commonly used alloys such as stainless steel and Co-Cr alloys. The formation of the β phase in titanium alloys is achieved through β-stabilizing elements such as Nb, Mo, and Ta. To produce new β alloys with a low modulus of elasticity, this work aimed to produce our alloy system for biomedical applications (Ti-50Nb-Mo). The alloys were produced by arc-melting and have the following compositions Ti-50Nb-xMo (x = 0, 3, 5, 7, and 12 wt% Mo). The alloys were characterized by density, X-ray diffraction, scanning electron microscopy, microhardness, and elastic modulus. It is worth highlighting that this new set of alloys of the Ti-50Nb-Mo system produced in this study is unprecedented; due to this, there needs to be a report in the literature on the production and structural characterization, hardness, and elastic modulus analyses. The microstructure of the alloys has an exclusively β phase (with bcc crystalline structure). The results show that adding molybdenum considerably increased the microhardness and decreased the elastic modulus, with values around 80 GPa, below the metallic materials used commercially for this type of application. From the produced alloys, Ti-50Nb-12Mo is highlighted due to its lower elastic modulus. |
doi_str_mv | 10.3390/ma17010250 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10779851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779346007</galeid><sourcerecordid>A779346007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5e2e16e7fb417154ec9a4bce82771358cee2e5c72440c13f03fe93b83dee24fd3</originalsourceid><addsrcrecordid>eNptkstu1DAUhiMEolXphgdAltggNCl27MTJCk2HApU6ZVPWluMcz7hy7MFOCvM8fYM-CM-EQ6c3hL3wkf_v_MeXk2WvCT6itMEfekk4Jrgo8bNsnzRNlZOGseeP4r3sMMZLnAalpC6al9kerQvMUtJ-dn3qriAOZiUH4x3yGg1rQIs19EZJixa-3_hoJm2GlkYFH4cwqmEMMEOfwCVpuxPWMnQOYpwh6Tp0YmVyVWjpu9GO8c74HH6i3zfowuQlPm_zX0uP5tb6bUTaB3RsfA_d38LzzcamYCocX2UvtLQRDnfrQfb988nF4mt-9u3L6WJ-livG2ZCXUACpgOuWEU5KBqqRrFVQF5wTWtYKElAqXjCGFaEaUw0NbWvaJYHpjh5kH299N2ObzqHADUFasQmml2ErvDTiqeLMWqz8lSCY86YuSXJ4t3MI_seY3lX0JiqwVjrwYxRFQyhjZV1VCX37D3rpx-DS_SaqqBpMWflAraQFYZz2qbCaTMU81aSswpgn6ug_VJrd9I3egTZp_0nC-9uE6UNjAH1_SYLF1Fbioa0S_Obxs9yjd01E_wCfxsjf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912690345</pqid></control><display><type>article</type><title>Investigation of the Chemical Composition, Microstructure, Density, Microhardness, and Elastic Modulus of the New β Ti-50Nb-xMo Alloys for Biomedical Applications</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Martins Junior, José Roberto Severino ; Kuroda, Pedro Akira Bazaglia ; Grandini, Carlos Roberto</creator><creatorcontrib>Martins Junior, José Roberto Severino ; Kuroda, Pedro Akira Bazaglia ; Grandini, Carlos Roberto</creatorcontrib><description>β-type titanium alloys with a body-centered cubic structure are highly useful in orthopedics due to their low elastic modulus, lower than other commonly used alloys such as stainless steel and Co-Cr alloys. The formation of the β phase in titanium alloys is achieved through β-stabilizing elements such as Nb, Mo, and Ta. To produce new β alloys with a low modulus of elasticity, this work aimed to produce our alloy system for biomedical applications (Ti-50Nb-Mo). The alloys were produced by arc-melting and have the following compositions Ti-50Nb-xMo (x = 0, 3, 5, 7, and 12 wt% Mo). The alloys were characterized by density, X-ray diffraction, scanning electron microscopy, microhardness, and elastic modulus. It is worth highlighting that this new set of alloys of the Ti-50Nb-Mo system produced in this study is unprecedented; due to this, there needs to be a report in the literature on the production and structural characterization, hardness, and elastic modulus analyses. The microstructure of the alloys has an exclusively β phase (with bcc crystalline structure). The results show that adding molybdenum considerably increased the microhardness and decreased the elastic modulus, with values around 80 GPa, below the metallic materials used commercially for this type of application. From the produced alloys, Ti-50Nb-12Mo is highlighted due to its lower elastic modulus.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17010250</identifier><identifier>PMID: 38204102</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloy systems ; Beta phase ; Biocompatibility ; Biomedical engineering ; Biomedical materials ; Chemical composition ; Cobalt base alloys ; Corrosion potential ; Corrosion resistance ; Corrosion tests ; Crystals ; Density ; Diffraction ; Elastic analysis ; Electric arc melting ; Gases ; Investigations ; Mechanical properties ; Microhardness ; Microstructure ; Modulus of elasticity ; Molybdenum ; Orthopedics ; Prostheses ; Scanning electron microscopy ; Specialty metals industry ; Stainless steels ; Structural analysis ; Structure ; Titanium ; Titanium alloys ; Titanium base alloys ; X-rays</subject><ispartof>Materials, 2024-01, Vol.17 (1), p.250</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5e2e16e7fb417154ec9a4bce82771358cee2e5c72440c13f03fe93b83dee24fd3</citedby><cites>FETCH-LOGICAL-c474t-5e2e16e7fb417154ec9a4bce82771358cee2e5c72440c13f03fe93b83dee24fd3</cites><orcidid>0000-0002-3336-309X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10779851/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10779851/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38204102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martins Junior, José Roberto Severino</creatorcontrib><creatorcontrib>Kuroda, Pedro Akira Bazaglia</creatorcontrib><creatorcontrib>Grandini, Carlos Roberto</creatorcontrib><title>Investigation of the Chemical Composition, Microstructure, Density, Microhardness, and Elastic Modulus of the New β Ti-50Nb-xMo Alloys for Biomedical Applications</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>β-type titanium alloys with a body-centered cubic structure are highly useful in orthopedics due to their low elastic modulus, lower than other commonly used alloys such as stainless steel and Co-Cr alloys. The formation of the β phase in titanium alloys is achieved through β-stabilizing elements such as Nb, Mo, and Ta. To produce new β alloys with a low modulus of elasticity, this work aimed to produce our alloy system for biomedical applications (Ti-50Nb-Mo). The alloys were produced by arc-melting and have the following compositions Ti-50Nb-xMo (x = 0, 3, 5, 7, and 12 wt% Mo). The alloys were characterized by density, X-ray diffraction, scanning electron microscopy, microhardness, and elastic modulus. It is worth highlighting that this new set of alloys of the Ti-50Nb-Mo system produced in this study is unprecedented; due to this, there needs to be a report in the literature on the production and structural characterization, hardness, and elastic modulus analyses. The microstructure of the alloys has an exclusively β phase (with bcc crystalline structure). The results show that adding molybdenum considerably increased the microhardness and decreased the elastic modulus, with values around 80 GPa, below the metallic materials used commercially for this type of application. From the produced alloys, Ti-50Nb-12Mo is highlighted due to its lower elastic modulus.</description><subject>Alloy systems</subject><subject>Beta phase</subject><subject>Biocompatibility</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Chemical composition</subject><subject>Cobalt base alloys</subject><subject>Corrosion potential</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Crystals</subject><subject>Density</subject><subject>Diffraction</subject><subject>Elastic analysis</subject><subject>Electric arc melting</subject><subject>Gases</subject><subject>Investigations</subject><subject>Mechanical properties</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Modulus of elasticity</subject><subject>Molybdenum</subject><subject>Orthopedics</subject><subject>Prostheses</subject><subject>Scanning electron microscopy</subject><subject>Specialty metals industry</subject><subject>Stainless steels</subject><subject>Structural analysis</subject><subject>Structure</subject><subject>Titanium</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>X-rays</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkstu1DAUhiMEolXphgdAltggNCl27MTJCk2HApU6ZVPWluMcz7hy7MFOCvM8fYM-CM-EQ6c3hL3wkf_v_MeXk2WvCT6itMEfekk4Jrgo8bNsnzRNlZOGseeP4r3sMMZLnAalpC6al9kerQvMUtJ-dn3qriAOZiUH4x3yGg1rQIs19EZJixa-3_hoJm2GlkYFH4cwqmEMMEOfwCVpuxPWMnQOYpwh6Tp0YmVyVWjpu9GO8c74HH6i3zfowuQlPm_zX0uP5tb6bUTaB3RsfA_d38LzzcamYCocX2UvtLQRDnfrQfb988nF4mt-9u3L6WJ-livG2ZCXUACpgOuWEU5KBqqRrFVQF5wTWtYKElAqXjCGFaEaUw0NbWvaJYHpjh5kH299N2ObzqHADUFasQmml2ErvDTiqeLMWqz8lSCY86YuSXJ4t3MI_seY3lX0JiqwVjrwYxRFQyhjZV1VCX37D3rpx-DS_SaqqBpMWflAraQFYZz2qbCaTMU81aSswpgn6ug_VJrd9I3egTZp_0nC-9uE6UNjAH1_SYLF1Fbioa0S_Obxs9yjd01E_wCfxsjf</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Martins Junior, José Roberto Severino</creator><creator>Kuroda, Pedro Akira Bazaglia</creator><creator>Grandini, Carlos Roberto</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3336-309X</orcidid></search><sort><creationdate>20240101</creationdate><title>Investigation of the Chemical Composition, Microstructure, Density, Microhardness, and Elastic Modulus of the New β Ti-50Nb-xMo Alloys for Biomedical Applications</title><author>Martins Junior, José Roberto Severino ; Kuroda, Pedro Akira Bazaglia ; Grandini, Carlos Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5e2e16e7fb417154ec9a4bce82771358cee2e5c72440c13f03fe93b83dee24fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloy systems</topic><topic>Beta phase</topic><topic>Biocompatibility</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Chemical composition</topic><topic>Cobalt base alloys</topic><topic>Corrosion potential</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Crystals</topic><topic>Density</topic><topic>Diffraction</topic><topic>Elastic analysis</topic><topic>Electric arc melting</topic><topic>Gases</topic><topic>Investigations</topic><topic>Mechanical properties</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Modulus of elasticity</topic><topic>Molybdenum</topic><topic>Orthopedics</topic><topic>Prostheses</topic><topic>Scanning electron microscopy</topic><topic>Specialty metals industry</topic><topic>Stainless steels</topic><topic>Structural analysis</topic><topic>Structure</topic><topic>Titanium</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins Junior, José Roberto Severino</creatorcontrib><creatorcontrib>Kuroda, Pedro Akira Bazaglia</creatorcontrib><creatorcontrib>Grandini, Carlos Roberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins Junior, José Roberto Severino</au><au>Kuroda, Pedro Akira Bazaglia</au><au>Grandini, Carlos Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the Chemical Composition, Microstructure, Density, Microhardness, and Elastic Modulus of the New β Ti-50Nb-xMo Alloys for Biomedical Applications</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>250</spage><pages>250-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>β-type titanium alloys with a body-centered cubic structure are highly useful in orthopedics due to their low elastic modulus, lower than other commonly used alloys such as stainless steel and Co-Cr alloys. The formation of the β phase in titanium alloys is achieved through β-stabilizing elements such as Nb, Mo, and Ta. To produce new β alloys with a low modulus of elasticity, this work aimed to produce our alloy system for biomedical applications (Ti-50Nb-Mo). The alloys were produced by arc-melting and have the following compositions Ti-50Nb-xMo (x = 0, 3, 5, 7, and 12 wt% Mo). The alloys were characterized by density, X-ray diffraction, scanning electron microscopy, microhardness, and elastic modulus. It is worth highlighting that this new set of alloys of the Ti-50Nb-Mo system produced in this study is unprecedented; due to this, there needs to be a report in the literature on the production and structural characterization, hardness, and elastic modulus analyses. The microstructure of the alloys has an exclusively β phase (with bcc crystalline structure). The results show that adding molybdenum considerably increased the microhardness and decreased the elastic modulus, with values around 80 GPa, below the metallic materials used commercially for this type of application. From the produced alloys, Ti-50Nb-12Mo is highlighted due to its lower elastic modulus.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38204102</pmid><doi>10.3390/ma17010250</doi><orcidid>https://orcid.org/0000-0002-3336-309X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-01, Vol.17 (1), p.250 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10779851 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alloy systems Beta phase Biocompatibility Biomedical engineering Biomedical materials Chemical composition Cobalt base alloys Corrosion potential Corrosion resistance Corrosion tests Crystals Density Diffraction Elastic analysis Electric arc melting Gases Investigations Mechanical properties Microhardness Microstructure Modulus of elasticity Molybdenum Orthopedics Prostheses Scanning electron microscopy Specialty metals industry Stainless steels Structural analysis Structure Titanium Titanium alloys Titanium base alloys X-rays |
title | Investigation of the Chemical Composition, Microstructure, Density, Microhardness, and Elastic Modulus of the New β Ti-50Nb-xMo Alloys for Biomedical Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20Chemical%20Composition,%20Microstructure,%20Density,%20Microhardness,%20and%20Elastic%20Modulus%20of%20the%20New%20%CE%B2%20Ti-50Nb-xMo%20Alloys%20for%20Biomedical%20Applications&rft.jtitle=Materials&rft.au=Martins%20Junior,%20Jos%C3%A9%20Roberto%20Severino&rft.date=2024-01-01&rft.volume=17&rft.issue=1&rft.spage=250&rft.pages=250-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17010250&rft_dat=%3Cgale_pubme%3EA779346007%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912690345&rft_id=info:pmid/38204102&rft_galeid=A779346007&rfr_iscdi=true |