Identification of Skin Lesions by Snapshot Hyperspectral Imaging

This study pioneers the application of artificial intelligence (AI) and hyperspectral imaging (HSI) in the diagnosis of skin cancer lesions, particularly focusing on Mycosis fungoides (MF) and its differentiation from psoriasis (PsO) and atopic dermatitis (AD). By utilizing a comprehensive dataset o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2024-01, Vol.16 (1), p.217
Hauptverfasser: Huang, Hung-Yi, Nguyen, Hong-Thai, Lin, Teng-Li, Saenprasarn, Penchun, Liu, Ping-Hung, Wang, Hsiang-Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 217
container_title Cancers
container_volume 16
creator Huang, Hung-Yi
Nguyen, Hong-Thai
Lin, Teng-Li
Saenprasarn, Penchun
Liu, Ping-Hung
Wang, Hsiang-Chen
description This study pioneers the application of artificial intelligence (AI) and hyperspectral imaging (HSI) in the diagnosis of skin cancer lesions, particularly focusing on Mycosis fungoides (MF) and its differentiation from psoriasis (PsO) and atopic dermatitis (AD). By utilizing a comprehensive dataset of 1659 skin images, including cases of MF, PsO, AD, and normal skin, a novel multi-frame AI algorithm was used for computer-aided diagnosis. The automatic segmentation and classification of skin lesions were further explored using advanced techniques, such as U-Net Attention models and XGBoost algorithms, transforming images from the color space to the spectral domain. The potential of AI and HSI in dermatological diagnostics was underscored, offering a noninvasive, efficient, and accurate alternative to traditional methods. The findings are particularly crucial for early-stage invasive lesion detection in MF, showcasing the model's robust performance in segmenting and classifying lesions and its superior predictive accuracy validated through k-fold cross-validation. The model attained its optimal performance with a k-fold cross-validation value of 7, achieving a sensitivity of 90.72%, a specificity of 96.76%, an F1-score of 90.08%, and an ROC-AUC of 0.9351. This study marks a substantial advancement in dermatological diagnostics, thereby contributing significantly to the early and precise identification of skin malignancies and inflammatory conditions.
doi_str_mv 10.3390/cancers16010217
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10778186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779132621</galeid><sourcerecordid>A779132621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-1efbdcef730820a28e1a0b3ebb4313803f8c5edf323cd287ee6e401cecac3f513</originalsourceid><addsrcrecordid>eNptUclOwzAUtBAIUOHMDUXiwqXUW2PnBKhiqVSJA3C2HOe5GBI7xClS_x5HlFXYB2_zZuZ5EDoi-IyxAk-M9ga6SHJMMCViC-1TLOg4zwu-_WO_hw5jfMZpMEZELnbRHpMUk5zzfXQxr8D3zjqjexd8Fmx2_-J8toCYjjEr19m91218Cn12u26TXAum73SdzRu9dH55gHasriMcbtYRery-epjdjhd3N_PZ5WJsuCz6MQFbVgasYDhpayqBaFwyKEvOCJOYWWmmUFlGmamoFAA5cEwMGG2YnRI2QucfvO2qbCBR-cGFajvX6G6tgnbq94t3T2oZ3hTBQkgi88RwumHowusKYq8aFw3UtfYQVlHRgjDOhUxmRujkD_Q5rDqf-htQdMoLIuU3aqlrUM7bkITNQKouhUhsNKeD8bN_UGlW0DgTPFiX7n8VTD4KTBdi7MB-NUmwGoJXf4JPFcc__-YL_xkzewcbHamP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912549188</pqid></control><display><type>article</type><title>Identification of Skin Lesions by Snapshot Hyperspectral Imaging</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Huang, Hung-Yi ; Nguyen, Hong-Thai ; Lin, Teng-Li ; Saenprasarn, Penchun ; Liu, Ping-Hung ; Wang, Hsiang-Chen</creator><creatorcontrib>Huang, Hung-Yi ; Nguyen, Hong-Thai ; Lin, Teng-Li ; Saenprasarn, Penchun ; Liu, Ping-Hung ; Wang, Hsiang-Chen</creatorcontrib><description>This study pioneers the application of artificial intelligence (AI) and hyperspectral imaging (HSI) in the diagnosis of skin cancer lesions, particularly focusing on Mycosis fungoides (MF) and its differentiation from psoriasis (PsO) and atopic dermatitis (AD). By utilizing a comprehensive dataset of 1659 skin images, including cases of MF, PsO, AD, and normal skin, a novel multi-frame AI algorithm was used for computer-aided diagnosis. The automatic segmentation and classification of skin lesions were further explored using advanced techniques, such as U-Net Attention models and XGBoost algorithms, transforming images from the color space to the spectral domain. The potential of AI and HSI in dermatological diagnostics was underscored, offering a noninvasive, efficient, and accurate alternative to traditional methods. The findings are particularly crucial for early-stage invasive lesion detection in MF, showcasing the model's robust performance in segmenting and classifying lesions and its superior predictive accuracy validated through k-fold cross-validation. The model attained its optimal performance with a k-fold cross-validation value of 7, achieving a sensitivity of 90.72%, a specificity of 96.76%, an F1-score of 90.08%, and an ROC-AUC of 0.9351. This study marks a substantial advancement in dermatological diagnostics, thereby contributing significantly to the early and precise identification of skin malignancies and inflammatory conditions.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers16010217</identifier><identifier>PMID: 38201644</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Atopic dermatitis ; Biopsy ; Cancer ; Classification ; Computational linguistics ; Datasets ; Dermatology ; Diagnosis ; Image processing ; Inflammation ; Invasiveness ; Language processing ; Malignancy ; Medical imaging equipment ; Melanoma ; Mycoses ; Mycosis ; Mycosis fungoides ; Natural language interfaces ; Patients ; Psoriasis ; Segmentation ; Skin ; Skin cancer ; Skin diseases ; Skin lesions ; Tomography</subject><ispartof>Cancers, 2024-01, Vol.16 (1), p.217</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-1efbdcef730820a28e1a0b3ebb4313803f8c5edf323cd287ee6e401cecac3f513</citedby><cites>FETCH-LOGICAL-c489t-1efbdcef730820a28e1a0b3ebb4313803f8c5edf323cd287ee6e401cecac3f513</cites><orcidid>0000-0002-1666-0666 ; 0000-0003-4107-2062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10778186/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10778186/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38201644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Hung-Yi</creatorcontrib><creatorcontrib>Nguyen, Hong-Thai</creatorcontrib><creatorcontrib>Lin, Teng-Li</creatorcontrib><creatorcontrib>Saenprasarn, Penchun</creatorcontrib><creatorcontrib>Liu, Ping-Hung</creatorcontrib><creatorcontrib>Wang, Hsiang-Chen</creatorcontrib><title>Identification of Skin Lesions by Snapshot Hyperspectral Imaging</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>This study pioneers the application of artificial intelligence (AI) and hyperspectral imaging (HSI) in the diagnosis of skin cancer lesions, particularly focusing on Mycosis fungoides (MF) and its differentiation from psoriasis (PsO) and atopic dermatitis (AD). By utilizing a comprehensive dataset of 1659 skin images, including cases of MF, PsO, AD, and normal skin, a novel multi-frame AI algorithm was used for computer-aided diagnosis. The automatic segmentation and classification of skin lesions were further explored using advanced techniques, such as U-Net Attention models and XGBoost algorithms, transforming images from the color space to the spectral domain. The potential of AI and HSI in dermatological diagnostics was underscored, offering a noninvasive, efficient, and accurate alternative to traditional methods. The findings are particularly crucial for early-stage invasive lesion detection in MF, showcasing the model's robust performance in segmenting and classifying lesions and its superior predictive accuracy validated through k-fold cross-validation. The model attained its optimal performance with a k-fold cross-validation value of 7, achieving a sensitivity of 90.72%, a specificity of 96.76%, an F1-score of 90.08%, and an ROC-AUC of 0.9351. This study marks a substantial advancement in dermatological diagnostics, thereby contributing significantly to the early and precise identification of skin malignancies and inflammatory conditions.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Atopic dermatitis</subject><subject>Biopsy</subject><subject>Cancer</subject><subject>Classification</subject><subject>Computational linguistics</subject><subject>Datasets</subject><subject>Dermatology</subject><subject>Diagnosis</subject><subject>Image processing</subject><subject>Inflammation</subject><subject>Invasiveness</subject><subject>Language processing</subject><subject>Malignancy</subject><subject>Medical imaging equipment</subject><subject>Melanoma</subject><subject>Mycoses</subject><subject>Mycosis</subject><subject>Mycosis fungoides</subject><subject>Natural language interfaces</subject><subject>Patients</subject><subject>Psoriasis</subject><subject>Segmentation</subject><subject>Skin</subject><subject>Skin cancer</subject><subject>Skin diseases</subject><subject>Skin lesions</subject><subject>Tomography</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptUclOwzAUtBAIUOHMDUXiwqXUW2PnBKhiqVSJA3C2HOe5GBI7xClS_x5HlFXYB2_zZuZ5EDoi-IyxAk-M9ga6SHJMMCViC-1TLOg4zwu-_WO_hw5jfMZpMEZELnbRHpMUk5zzfXQxr8D3zjqjexd8Fmx2_-J8toCYjjEr19m91218Cn12u26TXAum73SdzRu9dH55gHasriMcbtYRery-epjdjhd3N_PZ5WJsuCz6MQFbVgasYDhpayqBaFwyKEvOCJOYWWmmUFlGmamoFAA5cEwMGG2YnRI2QucfvO2qbCBR-cGFajvX6G6tgnbq94t3T2oZ3hTBQkgi88RwumHowusKYq8aFw3UtfYQVlHRgjDOhUxmRujkD_Q5rDqf-htQdMoLIuU3aqlrUM7bkITNQKouhUhsNKeD8bN_UGlW0DgTPFiX7n8VTD4KTBdi7MB-NUmwGoJXf4JPFcc__-YL_xkzewcbHamP</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Huang, Hung-Yi</creator><creator>Nguyen, Hong-Thai</creator><creator>Lin, Teng-Li</creator><creator>Saenprasarn, Penchun</creator><creator>Liu, Ping-Hung</creator><creator>Wang, Hsiang-Chen</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1666-0666</orcidid><orcidid>https://orcid.org/0000-0003-4107-2062</orcidid></search><sort><creationdate>20240101</creationdate><title>Identification of Skin Lesions by Snapshot Hyperspectral Imaging</title><author>Huang, Hung-Yi ; Nguyen, Hong-Thai ; Lin, Teng-Li ; Saenprasarn, Penchun ; Liu, Ping-Hung ; Wang, Hsiang-Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-1efbdcef730820a28e1a0b3ebb4313803f8c5edf323cd287ee6e401cecac3f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Atopic dermatitis</topic><topic>Biopsy</topic><topic>Cancer</topic><topic>Classification</topic><topic>Computational linguistics</topic><topic>Datasets</topic><topic>Dermatology</topic><topic>Diagnosis</topic><topic>Image processing</topic><topic>Inflammation</topic><topic>Invasiveness</topic><topic>Language processing</topic><topic>Malignancy</topic><topic>Medical imaging equipment</topic><topic>Melanoma</topic><topic>Mycoses</topic><topic>Mycosis</topic><topic>Mycosis fungoides</topic><topic>Natural language interfaces</topic><topic>Patients</topic><topic>Psoriasis</topic><topic>Segmentation</topic><topic>Skin</topic><topic>Skin cancer</topic><topic>Skin diseases</topic><topic>Skin lesions</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hung-Yi</creatorcontrib><creatorcontrib>Nguyen, Hong-Thai</creatorcontrib><creatorcontrib>Lin, Teng-Li</creatorcontrib><creatorcontrib>Saenprasarn, Penchun</creatorcontrib><creatorcontrib>Liu, Ping-Hung</creatorcontrib><creatorcontrib>Wang, Hsiang-Chen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hung-Yi</au><au>Nguyen, Hong-Thai</au><au>Lin, Teng-Li</au><au>Saenprasarn, Penchun</au><au>Liu, Ping-Hung</au><au>Wang, Hsiang-Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Skin Lesions by Snapshot Hyperspectral Imaging</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>217</spage><pages>217-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>This study pioneers the application of artificial intelligence (AI) and hyperspectral imaging (HSI) in the diagnosis of skin cancer lesions, particularly focusing on Mycosis fungoides (MF) and its differentiation from psoriasis (PsO) and atopic dermatitis (AD). By utilizing a comprehensive dataset of 1659 skin images, including cases of MF, PsO, AD, and normal skin, a novel multi-frame AI algorithm was used for computer-aided diagnosis. The automatic segmentation and classification of skin lesions were further explored using advanced techniques, such as U-Net Attention models and XGBoost algorithms, transforming images from the color space to the spectral domain. The potential of AI and HSI in dermatological diagnostics was underscored, offering a noninvasive, efficient, and accurate alternative to traditional methods. The findings are particularly crucial for early-stage invasive lesion detection in MF, showcasing the model's robust performance in segmenting and classifying lesions and its superior predictive accuracy validated through k-fold cross-validation. The model attained its optimal performance with a k-fold cross-validation value of 7, achieving a sensitivity of 90.72%, a specificity of 96.76%, an F1-score of 90.08%, and an ROC-AUC of 0.9351. This study marks a substantial advancement in dermatological diagnostics, thereby contributing significantly to the early and precise identification of skin malignancies and inflammatory conditions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38201644</pmid><doi>10.3390/cancers16010217</doi><orcidid>https://orcid.org/0000-0002-1666-0666</orcidid><orcidid>https://orcid.org/0000-0003-4107-2062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2024-01, Vol.16 (1), p.217
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10778186
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Accuracy
Algorithms
Artificial intelligence
Atopic dermatitis
Biopsy
Cancer
Classification
Computational linguistics
Datasets
Dermatology
Diagnosis
Image processing
Inflammation
Invasiveness
Language processing
Malignancy
Medical imaging equipment
Melanoma
Mycoses
Mycosis
Mycosis fungoides
Natural language interfaces
Patients
Psoriasis
Segmentation
Skin
Skin cancer
Skin diseases
Skin lesions
Tomography
title Identification of Skin Lesions by Snapshot Hyperspectral Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Skin%20Lesions%20by%20Snapshot%20Hyperspectral%20Imaging&rft.jtitle=Cancers&rft.au=Huang,%20Hung-Yi&rft.date=2024-01-01&rft.volume=16&rft.issue=1&rft.spage=217&rft.pages=217-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers16010217&rft_dat=%3Cgale_pubme%3EA779132621%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912549188&rft_id=info:pmid/38201644&rft_galeid=A779132621&rfr_iscdi=true