Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features

Background Nuclear pleomorphism and tumor microenvironment (TME) play a critical role in cancer development and progression. Identifying most predictive nuclei and TME features of basal cell carcinoma (BCC) may provide insights into which characteristics pathologists can use to distinguish and strat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Skin research and technology 2024-01, Vol.30 (1), p.e13571-n/a
Hauptverfasser: Lan, Xuemei, Guo, Guanchen, Wang, Xiaopo, Yan, Qiao, Xue, Ruzeng, Li, Yufen, Zhu, Jiaping, Dong, Zhengbang, Wang, Fei, Li, Guomin, Wang, Xiangxue, Xu, Jun, Jiang, Yiqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e13571
container_title Skin research and technology
container_volume 30
creator Lan, Xuemei
Guo, Guanchen
Wang, Xiaopo
Yan, Qiao
Xue, Ruzeng
Li, Yufen
Zhu, Jiaping
Dong, Zhengbang
Wang, Fei
Li, Guomin
Wang, Xiangxue
Xu, Jun
Jiang, Yiqun
description Background Nuclear pleomorphism and tumor microenvironment (TME) play a critical role in cancer development and progression. Identifying most predictive nuclei and TME features of basal cell carcinoma (BCC) may provide insights into which characteristics pathologists can use to distinguish and stratify this entity. Objectives To develop an automated workflow based on nuclei and TME features from basaloid cell tumor regions to differentiate BCC from trichoepithelioma (TE) and stratify BCC into high‐risk (HR) and low‐risk (LR) subtypes, and to identify the nuclear and TME characteristics profile of different basaloid cell tumors. Methods The deep learning systems were trained on 161 H&E ‐stained sections which contained 51 sections of HR‐BCC, 50 sections of LR‐BCC and 60 sections of TE from one institution (D1), and externally and independently validated on D2 (46 sections) and D3 (76 sections), from 2015 to 2022. 60%, 20% and 20% of D1 data were randomly splitted for training, validation and testing, respectively. The framework comprised four stages: tumor regions identification by multi‐head self‐attention (MSA) U‐Net, nuclei segmentation by HoVer‐Net, quantitative feature by handcrafted extraction, and differentiation and risk stratification classifier construction. Pixel accuracy, precision, recall, dice score, intersection over union (IoU) and area under the curve (AUC) were used to evaluate the performance of tumor segmentation model and classifiers. Results MSA‐U‐Net model detected tumor regions with 0.910 precision, 0.869 recall, 0.889 dice score and 0.800 IoU. The differentiation classifier achieved 0.977 ± 0.0159, 0.955 ± 0.0181, 0.885 ± 0.0237 AUC in D1, D2 and D3, respectively. The most discriminative features between BCC and TE contained Homogeneity, Elongation, T‐T_meanEdgeLength, T‐T_Nsubgraph, S‐T_HarmonicCentrality, S‐S_Degrees. The risk stratification model can well predict HR‐BCC and LR‐BCC with 0.920 ± 0.0579, 0.839 ± 0.0176, 0.825 ± 0.0153 AUC in D1, D2 and D3, respectively. The most discriminative features between HR‐BCC and LR‐BCC comprised IntensityMin, Solidity, T‐T_minEdgeLength, T‐T_Coreness, T‐T_Degrees, T‐T_Betweenness, S‐T_Degrees. Conclusions This framework hold potential for future use as a second opinion helping inform diagnosis of BCC, and identify nuclei and TME features related with malignancy and tumor risk stratification.
doi_str_mv 10.1111/srt.13571
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10776893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919307686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4981-72e23e3b79c4609357dad9d034449ea648b47fce830f856b72f21bbc8b2d22dd3</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoModq1e-Ack4I1eTJuvzUyuROonFASt4F3IZE52U2eSNcm09Af5P83u1KKCuZjAmYeHN-dF6CklJ7Se05zKCeXrlt5DKyoJaUgn5H20Ioqopl2zb0foUc6XhJC1ovwhOuIdVZJKsUI_33jnIEEo3hQfAzZhwMnn7ziXVCfO22UeHe5NNiO2MNaPSdaHOBl87csWDwA7PIJJwYcNrvTW5xJ3pmzjGDfeYj-ZDeSDfAKT57TnwmxH8IdhmaeY8ORtihCufIphqpGwA1PmBPkxeuDMmOHJ7X2Mvr57e3H2oTn_9P7j2evzxgrV0aZlwDjwvlVWSKLqRgYzqIFwIYQCI0XXi9ZZ6Dhx3Vr2LXOM9r3tejYwNgz8GL1avLu5n2CwNUMyo96lmj_d6Gi8_vtP8Fu9iVeakraVneLV8OLWkOKPGXLRk8_7lZkAcc6a1QJIRyVjFX3-D3oZ5xTq-_aU4qQaZaVeLlRdTc4J3F0aSvS-fV3b14f2K_vsz_h35O-6K3C6ANd-hJv_m_SXzxeL8hdqX78C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919307686</pqid></control><display><type>article</type><title>Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><creator>Lan, Xuemei ; Guo, Guanchen ; Wang, Xiaopo ; Yan, Qiao ; Xue, Ruzeng ; Li, Yufen ; Zhu, Jiaping ; Dong, Zhengbang ; Wang, Fei ; Li, Guomin ; Wang, Xiangxue ; Xu, Jun ; Jiang, Yiqun</creator><creatorcontrib>Lan, Xuemei ; Guo, Guanchen ; Wang, Xiaopo ; Yan, Qiao ; Xue, Ruzeng ; Li, Yufen ; Zhu, Jiaping ; Dong, Zhengbang ; Wang, Fei ; Li, Guomin ; Wang, Xiangxue ; Xu, Jun ; Jiang, Yiqun</creatorcontrib><description>Background Nuclear pleomorphism and tumor microenvironment (TME) play a critical role in cancer development and progression. Identifying most predictive nuclei and TME features of basal cell carcinoma (BCC) may provide insights into which characteristics pathologists can use to distinguish and stratify this entity. Objectives To develop an automated workflow based on nuclei and TME features from basaloid cell tumor regions to differentiate BCC from trichoepithelioma (TE) and stratify BCC into high‐risk (HR) and low‐risk (LR) subtypes, and to identify the nuclear and TME characteristics profile of different basaloid cell tumors. Methods The deep learning systems were trained on 161 H&amp;E ‐stained sections which contained 51 sections of HR‐BCC, 50 sections of LR‐BCC and 60 sections of TE from one institution (D1), and externally and independently validated on D2 (46 sections) and D3 (76 sections), from 2015 to 2022. 60%, 20% and 20% of D1 data were randomly splitted for training, validation and testing, respectively. The framework comprised four stages: tumor regions identification by multi‐head self‐attention (MSA) U‐Net, nuclei segmentation by HoVer‐Net, quantitative feature by handcrafted extraction, and differentiation and risk stratification classifier construction. Pixel accuracy, precision, recall, dice score, intersection over union (IoU) and area under the curve (AUC) were used to evaluate the performance of tumor segmentation model and classifiers. Results MSA‐U‐Net model detected tumor regions with 0.910 precision, 0.869 recall, 0.889 dice score and 0.800 IoU. The differentiation classifier achieved 0.977 ± 0.0159, 0.955 ± 0.0181, 0.885 ± 0.0237 AUC in D1, D2 and D3, respectively. The most discriminative features between BCC and TE contained Homogeneity, Elongation, T‐T_meanEdgeLength, T‐T_Nsubgraph, S‐T_HarmonicCentrality, S‐S_Degrees. The risk stratification model can well predict HR‐BCC and LR‐BCC with 0.920 ± 0.0579, 0.839 ± 0.0176, 0.825 ± 0.0153 AUC in D1, D2 and D3, respectively. The most discriminative features between HR‐BCC and LR‐BCC comprised IntensityMin, Solidity, T‐T_minEdgeLength, T‐T_Coreness, T‐T_Degrees, T‐T_Betweenness, S‐T_Degrees. Conclusions This framework hold potential for future use as a second opinion helping inform diagnosis of BCC, and identify nuclei and TME features related with malignancy and tumor risk stratification.</description><identifier>ISSN: 0909-752X</identifier><identifier>EISSN: 1600-0846</identifier><identifier>DOI: 10.1111/srt.13571</identifier><identifier>PMID: 38196164</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>artificial intelligence ; Basal cell carcinoma ; basal cell carcinoma vs trichoepithelioma ; Cancer ; Carcinoma ; Carcinoma, Basal Cell - diagnostic imaging ; Cell differentiation ; Classifiers ; Deep Learning ; Differentiation ; Elongation ; histopathology images ; Homogeneity ; Humans ; Malignancy ; Nuclei ; Nuclei (cytology) ; Original ; Pleomorphism ; Recall ; Risk ; Risk Assessment ; Segmentation ; Skin cancer ; Skin Neoplasms - diagnostic imaging ; Trichoepithelioma ; Tumor Microenvironment ; Tumors ; Workflow</subject><ispartof>Skin research and technology, 2024-01, Vol.30 (1), p.e13571-n/a</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2024 The Authors. Skin Research and Technology published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4981-72e23e3b79c4609357dad9d034449ea648b47fce830f856b72f21bbc8b2d22dd3</citedby><cites>FETCH-LOGICAL-c4981-72e23e3b79c4609357dad9d034449ea648b47fce830f856b72f21bbc8b2d22dd3</cites><orcidid>0000-0002-7870-6615 ; 0000-0002-8008-718X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776893/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776893/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11542,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38196164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lan, Xuemei</creatorcontrib><creatorcontrib>Guo, Guanchen</creatorcontrib><creatorcontrib>Wang, Xiaopo</creatorcontrib><creatorcontrib>Yan, Qiao</creatorcontrib><creatorcontrib>Xue, Ruzeng</creatorcontrib><creatorcontrib>Li, Yufen</creatorcontrib><creatorcontrib>Zhu, Jiaping</creatorcontrib><creatorcontrib>Dong, Zhengbang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Li, Guomin</creatorcontrib><creatorcontrib>Wang, Xiangxue</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Jiang, Yiqun</creatorcontrib><title>Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features</title><title>Skin research and technology</title><addtitle>Skin Res Technol</addtitle><description>Background Nuclear pleomorphism and tumor microenvironment (TME) play a critical role in cancer development and progression. Identifying most predictive nuclei and TME features of basal cell carcinoma (BCC) may provide insights into which characteristics pathologists can use to distinguish and stratify this entity. Objectives To develop an automated workflow based on nuclei and TME features from basaloid cell tumor regions to differentiate BCC from trichoepithelioma (TE) and stratify BCC into high‐risk (HR) and low‐risk (LR) subtypes, and to identify the nuclear and TME characteristics profile of different basaloid cell tumors. Methods The deep learning systems were trained on 161 H&amp;E ‐stained sections which contained 51 sections of HR‐BCC, 50 sections of LR‐BCC and 60 sections of TE from one institution (D1), and externally and independently validated on D2 (46 sections) and D3 (76 sections), from 2015 to 2022. 60%, 20% and 20% of D1 data were randomly splitted for training, validation and testing, respectively. The framework comprised four stages: tumor regions identification by multi‐head self‐attention (MSA) U‐Net, nuclei segmentation by HoVer‐Net, quantitative feature by handcrafted extraction, and differentiation and risk stratification classifier construction. Pixel accuracy, precision, recall, dice score, intersection over union (IoU) and area under the curve (AUC) were used to evaluate the performance of tumor segmentation model and classifiers. Results MSA‐U‐Net model detected tumor regions with 0.910 precision, 0.869 recall, 0.889 dice score and 0.800 IoU. The differentiation classifier achieved 0.977 ± 0.0159, 0.955 ± 0.0181, 0.885 ± 0.0237 AUC in D1, D2 and D3, respectively. The most discriminative features between BCC and TE contained Homogeneity, Elongation, T‐T_meanEdgeLength, T‐T_Nsubgraph, S‐T_HarmonicCentrality, S‐S_Degrees. The risk stratification model can well predict HR‐BCC and LR‐BCC with 0.920 ± 0.0579, 0.839 ± 0.0176, 0.825 ± 0.0153 AUC in D1, D2 and D3, respectively. The most discriminative features between HR‐BCC and LR‐BCC comprised IntensityMin, Solidity, T‐T_minEdgeLength, T‐T_Coreness, T‐T_Degrees, T‐T_Betweenness, S‐T_Degrees. Conclusions This framework hold potential for future use as a second opinion helping inform diagnosis of BCC, and identify nuclei and TME features related with malignancy and tumor risk stratification.</description><subject>artificial intelligence</subject><subject>Basal cell carcinoma</subject><subject>basal cell carcinoma vs trichoepithelioma</subject><subject>Cancer</subject><subject>Carcinoma</subject><subject>Carcinoma, Basal Cell - diagnostic imaging</subject><subject>Cell differentiation</subject><subject>Classifiers</subject><subject>Deep Learning</subject><subject>Differentiation</subject><subject>Elongation</subject><subject>histopathology images</subject><subject>Homogeneity</subject><subject>Humans</subject><subject>Malignancy</subject><subject>Nuclei</subject><subject>Nuclei (cytology)</subject><subject>Original</subject><subject>Pleomorphism</subject><subject>Recall</subject><subject>Risk</subject><subject>Risk Assessment</subject><subject>Segmentation</subject><subject>Skin cancer</subject><subject>Skin Neoplasms - diagnostic imaging</subject><subject>Trichoepithelioma</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><subject>Workflow</subject><issn>0909-752X</issn><issn>1600-0846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kV1rFDEUhoModq1e-Ack4I1eTJuvzUyuROonFASt4F3IZE52U2eSNcm09Af5P83u1KKCuZjAmYeHN-dF6CklJ7Se05zKCeXrlt5DKyoJaUgn5H20Ioqopl2zb0foUc6XhJC1ovwhOuIdVZJKsUI_33jnIEEo3hQfAzZhwMnn7ziXVCfO22UeHe5NNiO2MNaPSdaHOBl87csWDwA7PIJJwYcNrvTW5xJ3pmzjGDfeYj-ZDeSDfAKT57TnwmxH8IdhmaeY8ORtihCufIphqpGwA1PmBPkxeuDMmOHJ7X2Mvr57e3H2oTn_9P7j2evzxgrV0aZlwDjwvlVWSKLqRgYzqIFwIYQCI0XXi9ZZ6Dhx3Vr2LXOM9r3tejYwNgz8GL1avLu5n2CwNUMyo96lmj_d6Gi8_vtP8Fu9iVeakraVneLV8OLWkOKPGXLRk8_7lZkAcc6a1QJIRyVjFX3-D3oZ5xTq-_aU4qQaZaVeLlRdTc4J3F0aSvS-fV3b14f2K_vsz_h35O-6K3C6ANd-hJv_m_SXzxeL8hdqX78C</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Lan, Xuemei</creator><creator>Guo, Guanchen</creator><creator>Wang, Xiaopo</creator><creator>Yan, Qiao</creator><creator>Xue, Ruzeng</creator><creator>Li, Yufen</creator><creator>Zhu, Jiaping</creator><creator>Dong, Zhengbang</creator><creator>Wang, Fei</creator><creator>Li, Guomin</creator><creator>Wang, Xiangxue</creator><creator>Xu, Jun</creator><creator>Jiang, Yiqun</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7870-6615</orcidid><orcidid>https://orcid.org/0000-0002-8008-718X</orcidid></search><sort><creationdate>202401</creationdate><title>Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features</title><author>Lan, Xuemei ; Guo, Guanchen ; Wang, Xiaopo ; Yan, Qiao ; Xue, Ruzeng ; Li, Yufen ; Zhu, Jiaping ; Dong, Zhengbang ; Wang, Fei ; Li, Guomin ; Wang, Xiangxue ; Xu, Jun ; Jiang, Yiqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4981-72e23e3b79c4609357dad9d034449ea648b47fce830f856b72f21bbc8b2d22dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>artificial intelligence</topic><topic>Basal cell carcinoma</topic><topic>basal cell carcinoma vs trichoepithelioma</topic><topic>Cancer</topic><topic>Carcinoma</topic><topic>Carcinoma, Basal Cell - diagnostic imaging</topic><topic>Cell differentiation</topic><topic>Classifiers</topic><topic>Deep Learning</topic><topic>Differentiation</topic><topic>Elongation</topic><topic>histopathology images</topic><topic>Homogeneity</topic><topic>Humans</topic><topic>Malignancy</topic><topic>Nuclei</topic><topic>Nuclei (cytology)</topic><topic>Original</topic><topic>Pleomorphism</topic><topic>Recall</topic><topic>Risk</topic><topic>Risk Assessment</topic><topic>Segmentation</topic><topic>Skin cancer</topic><topic>Skin Neoplasms - diagnostic imaging</topic><topic>Trichoepithelioma</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Xuemei</creatorcontrib><creatorcontrib>Guo, Guanchen</creatorcontrib><creatorcontrib>Wang, Xiaopo</creatorcontrib><creatorcontrib>Yan, Qiao</creatorcontrib><creatorcontrib>Xue, Ruzeng</creatorcontrib><creatorcontrib>Li, Yufen</creatorcontrib><creatorcontrib>Zhu, Jiaping</creatorcontrib><creatorcontrib>Dong, Zhengbang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Li, Guomin</creatorcontrib><creatorcontrib>Wang, Xiangxue</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Jiang, Yiqun</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Skin research and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Xuemei</au><au>Guo, Guanchen</au><au>Wang, Xiaopo</au><au>Yan, Qiao</au><au>Xue, Ruzeng</au><au>Li, Yufen</au><au>Zhu, Jiaping</au><au>Dong, Zhengbang</au><au>Wang, Fei</au><au>Li, Guomin</au><au>Wang, Xiangxue</au><au>Xu, Jun</au><au>Jiang, Yiqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features</atitle><jtitle>Skin research and technology</jtitle><addtitle>Skin Res Technol</addtitle><date>2024-01</date><risdate>2024</risdate><volume>30</volume><issue>1</issue><spage>e13571</spage><epage>n/a</epage><pages>e13571-n/a</pages><issn>0909-752X</issn><eissn>1600-0846</eissn><abstract>Background Nuclear pleomorphism and tumor microenvironment (TME) play a critical role in cancer development and progression. Identifying most predictive nuclei and TME features of basal cell carcinoma (BCC) may provide insights into which characteristics pathologists can use to distinguish and stratify this entity. Objectives To develop an automated workflow based on nuclei and TME features from basaloid cell tumor regions to differentiate BCC from trichoepithelioma (TE) and stratify BCC into high‐risk (HR) and low‐risk (LR) subtypes, and to identify the nuclear and TME characteristics profile of different basaloid cell tumors. Methods The deep learning systems were trained on 161 H&amp;E ‐stained sections which contained 51 sections of HR‐BCC, 50 sections of LR‐BCC and 60 sections of TE from one institution (D1), and externally and independently validated on D2 (46 sections) and D3 (76 sections), from 2015 to 2022. 60%, 20% and 20% of D1 data were randomly splitted for training, validation and testing, respectively. The framework comprised four stages: tumor regions identification by multi‐head self‐attention (MSA) U‐Net, nuclei segmentation by HoVer‐Net, quantitative feature by handcrafted extraction, and differentiation and risk stratification classifier construction. Pixel accuracy, precision, recall, dice score, intersection over union (IoU) and area under the curve (AUC) were used to evaluate the performance of tumor segmentation model and classifiers. Results MSA‐U‐Net model detected tumor regions with 0.910 precision, 0.869 recall, 0.889 dice score and 0.800 IoU. The differentiation classifier achieved 0.977 ± 0.0159, 0.955 ± 0.0181, 0.885 ± 0.0237 AUC in D1, D2 and D3, respectively. The most discriminative features between BCC and TE contained Homogeneity, Elongation, T‐T_meanEdgeLength, T‐T_Nsubgraph, S‐T_HarmonicCentrality, S‐S_Degrees. The risk stratification model can well predict HR‐BCC and LR‐BCC with 0.920 ± 0.0579, 0.839 ± 0.0176, 0.825 ± 0.0153 AUC in D1, D2 and D3, respectively. The most discriminative features between HR‐BCC and LR‐BCC comprised IntensityMin, Solidity, T‐T_minEdgeLength, T‐T_Coreness, T‐T_Degrees, T‐T_Betweenness, S‐T_Degrees. Conclusions This framework hold potential for future use as a second opinion helping inform diagnosis of BCC, and identify nuclei and TME features related with malignancy and tumor risk stratification.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38196164</pmid><doi>10.1111/srt.13571</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7870-6615</orcidid><orcidid>https://orcid.org/0000-0002-8008-718X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0909-752X
ispartof Skin research and technology, 2024-01, Vol.30 (1), p.e13571-n/a
issn 0909-752X
1600-0846
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10776893
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; PubMed Central
subjects artificial intelligence
Basal cell carcinoma
basal cell carcinoma vs trichoepithelioma
Cancer
Carcinoma
Carcinoma, Basal Cell - diagnostic imaging
Cell differentiation
Classifiers
Deep Learning
Differentiation
Elongation
histopathology images
Homogeneity
Humans
Malignancy
Nuclei
Nuclei (cytology)
Original
Pleomorphism
Recall
Risk
Risk Assessment
Segmentation
Skin cancer
Skin Neoplasms - diagnostic imaging
Trichoepithelioma
Tumor Microenvironment
Tumors
Workflow
title Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiation%20and%20risk%20stratification%20of%20basal%20cell%20carcinoma%20with%20deep%20learning%20on%20histopathologic%20images%20and%20measuring%20nuclei%20and%20tumor%20microenvironment%20features&rft.jtitle=Skin%20research%20and%20technology&rft.au=Lan,%20Xuemei&rft.date=2024-01&rft.volume=30&rft.issue=1&rft.spage=e13571&rft.epage=n/a&rft.pages=e13571-n/a&rft.issn=0909-752X&rft.eissn=1600-0846&rft_id=info:doi/10.1111/srt.13571&rft_dat=%3Cproquest_pubme%3E2919307686%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919307686&rft_id=info:pmid/38196164&rfr_iscdi=true