Combinatorial single-cell profiling of major chromatin types with MAbID
Gene expression programs result from the collective activity of numerous regulatory factors. Studying their cooperative mode of action is imperative to understand gene regulation, but simultaneously measuring these factors within one sample has been challenging. Here we introduce Multiplexing Antibo...
Gespeichert in:
Veröffentlicht in: | Nature methods 2024, Vol.21 (1), p.72-82 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | 1 |
container_start_page | 72 |
container_title | Nature methods |
container_volume | 21 |
creator | Lochs, Silke J. A. van der Weide, Robin H. de Luca, Kim L. Korthout, Tessy van Beek, Ramada E. Kimura, Hiroshi Kind, Jop |
description | Gene expression programs result from the collective activity of numerous regulatory factors. Studying their cooperative mode of action is imperative to understand gene regulation, but simultaneously measuring these factors within one sample has been challenging. Here we introduce Multiplexing Antibodies by barcode Identification (MAbID), a method for combinatorial genomic profiling of histone modifications and chromatin-binding proteins. MAbID employs antibody–DNA conjugates to integrate barcodes at the genomic location of the epitope, enabling combined incubation of multiple antibodies to reveal the distributions of many epigenetic markers simultaneously. We used MAbID to profile major chromatin types and multiplexed measurements without loss of individual data quality. Moreover, we obtained joint measurements of six epitopes in single cells of mouse bone marrow and during mouse in vitro differentiation, capturing associated changes in multifactorial chromatin states. Thus, MAbID holds the potential to gain unique insights into the interplay between gene regulatory mechanisms, especially for low-input samples and in single cells.
MAbID offers a multiplexing approach to uncover the genomic distributions of various epigenetic markers, enabling the study of how these markers jointly direct gene expression. |
doi_str_mv | 10.1038/s41592-023-02090-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10776404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912144159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-982be196873fe53af0ac4b01cce32e473758b1dcdaab2520a05550bf96988e203</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0Eomx_gAOKxIVLYLw19glVZatUxAXOluM6raskLnYK6r_HpewHDpYtz5s38_QhdIzhHAMVF5FhLkkOhKYDEnK5hfYwZyIvMPDtzzdI3EP7Mc4BKGWE76IeFcBkX8o9dDv0Tela3fngdJ1F105rmxtb19ki-MrV6SPzVdbouQ-ZmQXf6M61Wbda2Ji9um6W3Q_K0dUh2ql0He3Rx32Anm6uH4d3-fjhdjQcjHPDSL_LpSClxbIvClpZTnUF2rASsDGWEssKWnBR4omZaF0STkAD5xzKKi0rhCVAD9DlxnexLBs7Mbbtgq7VIrhGh5Xy2qnfldbN1NS_KAxF0WfAksPZh0Pwz0sbO9W4uA6sW-uXUREhBcVEcJKkp3-kc78MbcqniMQEszWApCIblQk-xmCrr20wqDUotQGlEij1Dkqtm05-5vhq-SSTBHQjiKnUTm34nv2P7RsuD55G</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912144159</pqid></control><display><type>article</type><title>Combinatorial single-cell profiling of major chromatin types with MAbID</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Lochs, Silke J. A. ; van der Weide, Robin H. ; de Luca, Kim L. ; Korthout, Tessy ; van Beek, Ramada E. ; Kimura, Hiroshi ; Kind, Jop</creator><creatorcontrib>Lochs, Silke J. A. ; van der Weide, Robin H. ; de Luca, Kim L. ; Korthout, Tessy ; van Beek, Ramada E. ; Kimura, Hiroshi ; Kind, Jop</creatorcontrib><description>Gene expression programs result from the collective activity of numerous regulatory factors. Studying their cooperative mode of action is imperative to understand gene regulation, but simultaneously measuring these factors within one sample has been challenging. Here we introduce Multiplexing Antibodies by barcode Identification (MAbID), a method for combinatorial genomic profiling of histone modifications and chromatin-binding proteins. MAbID employs antibody–DNA conjugates to integrate barcodes at the genomic location of the epitope, enabling combined incubation of multiple antibodies to reveal the distributions of many epigenetic markers simultaneously. We used MAbID to profile major chromatin types and multiplexed measurements without loss of individual data quality. Moreover, we obtained joint measurements of six epitopes in single cells of mouse bone marrow and during mouse in vitro differentiation, capturing associated changes in multifactorial chromatin states. Thus, MAbID holds the potential to gain unique insights into the interplay between gene regulatory mechanisms, especially for low-input samples and in single cells.
MAbID offers a multiplexing approach to uncover the genomic distributions of various epigenetic markers, enabling the study of how these markers jointly direct gene expression.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-023-02090-9</identifier><identifier>PMID: 38049699</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/2210/2211 ; 631/61/212/177 ; Animals ; Antibodies ; Bar codes ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomarkers ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Bone marrow ; Chromatin ; Chromatin - genetics ; Chromatin Immunoprecipitation - methods ; Combinatorial analysis ; Epigenesis, Genetic ; Epigenetics ; Epitopes ; Gene expression ; Gene regulation ; Genomics ; Histone Code ; Histones ; Histones - metabolism ; Life Sciences ; Mice ; Mode of action ; Multiplexing ; Protein Processing, Post-Translational ; Proteomics ; Regulatory mechanisms (biology)</subject><ispartof>Nature methods, 2024, Vol.21 (1), p.72-82</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-982be196873fe53af0ac4b01cce32e473758b1dcdaab2520a05550bf96988e203</cites><orcidid>0000-0003-0854-083X ; 0000-0001-8066-2984 ; 0000-0002-6466-7280 ; 0000-0001-7538-2638 ; 0000-0002-5900-5100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-023-02090-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-023-02090-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38049699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lochs, Silke J. A.</creatorcontrib><creatorcontrib>van der Weide, Robin H.</creatorcontrib><creatorcontrib>de Luca, Kim L.</creatorcontrib><creatorcontrib>Korthout, Tessy</creatorcontrib><creatorcontrib>van Beek, Ramada E.</creatorcontrib><creatorcontrib>Kimura, Hiroshi</creatorcontrib><creatorcontrib>Kind, Jop</creatorcontrib><title>Combinatorial single-cell profiling of major chromatin types with MAbID</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Gene expression programs result from the collective activity of numerous regulatory factors. Studying their cooperative mode of action is imperative to understand gene regulation, but simultaneously measuring these factors within one sample has been challenging. Here we introduce Multiplexing Antibodies by barcode Identification (MAbID), a method for combinatorial genomic profiling of histone modifications and chromatin-binding proteins. MAbID employs antibody–DNA conjugates to integrate barcodes at the genomic location of the epitope, enabling combined incubation of multiple antibodies to reveal the distributions of many epigenetic markers simultaneously. We used MAbID to profile major chromatin types and multiplexed measurements without loss of individual data quality. Moreover, we obtained joint measurements of six epitopes in single cells of mouse bone marrow and during mouse in vitro differentiation, capturing associated changes in multifactorial chromatin states. Thus, MAbID holds the potential to gain unique insights into the interplay between gene regulatory mechanisms, especially for low-input samples and in single cells.
MAbID offers a multiplexing approach to uncover the genomic distributions of various epigenetic markers, enabling the study of how these markers jointly direct gene expression.</description><subject>631/1647/2210/2211</subject><subject>631/61/212/177</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Bar codes</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Bone marrow</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin Immunoprecipitation - methods</subject><subject>Combinatorial analysis</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Epitopes</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genomics</subject><subject>Histone Code</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mode of action</subject><subject>Multiplexing</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteomics</subject><subject>Regulatory mechanisms (biology)</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUlPwzAQhS0Eomx_gAOKxIVLYLw19glVZatUxAXOluM6raskLnYK6r_HpewHDpYtz5s38_QhdIzhHAMVF5FhLkkOhKYDEnK5hfYwZyIvMPDtzzdI3EP7Mc4BKGWE76IeFcBkX8o9dDv0Tela3fngdJ1F105rmxtb19ki-MrV6SPzVdbouQ-ZmQXf6M61Wbda2Ji9um6W3Q_K0dUh2ql0He3Rx32Anm6uH4d3-fjhdjQcjHPDSL_LpSClxbIvClpZTnUF2rASsDGWEssKWnBR4omZaF0STkAD5xzKKi0rhCVAD9DlxnexLBs7Mbbtgq7VIrhGh5Xy2qnfldbN1NS_KAxF0WfAksPZh0Pwz0sbO9W4uA6sW-uXUREhBcVEcJKkp3-kc78MbcqniMQEszWApCIblQk-xmCrr20wqDUotQGlEij1Dkqtm05-5vhq-SSTBHQjiKnUTm34nv2P7RsuD55G</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lochs, Silke J. A.</creator><creator>van der Weide, Robin H.</creator><creator>de Luca, Kim L.</creator><creator>Korthout, Tessy</creator><creator>van Beek, Ramada E.</creator><creator>Kimura, Hiroshi</creator><creator>Kind, Jop</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0854-083X</orcidid><orcidid>https://orcid.org/0000-0001-8066-2984</orcidid><orcidid>https://orcid.org/0000-0002-6466-7280</orcidid><orcidid>https://orcid.org/0000-0001-7538-2638</orcidid><orcidid>https://orcid.org/0000-0002-5900-5100</orcidid></search><sort><creationdate>2024</creationdate><title>Combinatorial single-cell profiling of major chromatin types with MAbID</title><author>Lochs, Silke J. A. ; van der Weide, Robin H. ; de Luca, Kim L. ; Korthout, Tessy ; van Beek, Ramada E. ; Kimura, Hiroshi ; Kind, Jop</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-982be196873fe53af0ac4b01cce32e473758b1dcdaab2520a05550bf96988e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/1647/2210/2211</topic><topic>631/61/212/177</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Bar codes</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Bone marrow</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin Immunoprecipitation - methods</topic><topic>Combinatorial analysis</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Epitopes</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genomics</topic><topic>Histone Code</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mode of action</topic><topic>Multiplexing</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteomics</topic><topic>Regulatory mechanisms (biology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lochs, Silke J. A.</creatorcontrib><creatorcontrib>van der Weide, Robin H.</creatorcontrib><creatorcontrib>de Luca, Kim L.</creatorcontrib><creatorcontrib>Korthout, Tessy</creatorcontrib><creatorcontrib>van Beek, Ramada E.</creatorcontrib><creatorcontrib>Kimura, Hiroshi</creatorcontrib><creatorcontrib>Kind, Jop</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lochs, Silke J. A.</au><au>van der Weide, Robin H.</au><au>de Luca, Kim L.</au><au>Korthout, Tessy</au><au>van Beek, Ramada E.</au><au>Kimura, Hiroshi</au><au>Kind, Jop</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combinatorial single-cell profiling of major chromatin types with MAbID</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2024</date><risdate>2024</risdate><volume>21</volume><issue>1</issue><spage>72</spage><epage>82</epage><pages>72-82</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Gene expression programs result from the collective activity of numerous regulatory factors. Studying their cooperative mode of action is imperative to understand gene regulation, but simultaneously measuring these factors within one sample has been challenging. Here we introduce Multiplexing Antibodies by barcode Identification (MAbID), a method for combinatorial genomic profiling of histone modifications and chromatin-binding proteins. MAbID employs antibody–DNA conjugates to integrate barcodes at the genomic location of the epitope, enabling combined incubation of multiple antibodies to reveal the distributions of many epigenetic markers simultaneously. We used MAbID to profile major chromatin types and multiplexed measurements without loss of individual data quality. Moreover, we obtained joint measurements of six epitopes in single cells of mouse bone marrow and during mouse in vitro differentiation, capturing associated changes in multifactorial chromatin states. Thus, MAbID holds the potential to gain unique insights into the interplay between gene regulatory mechanisms, especially for low-input samples and in single cells.
MAbID offers a multiplexing approach to uncover the genomic distributions of various epigenetic markers, enabling the study of how these markers jointly direct gene expression.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>38049699</pmid><doi>10.1038/s41592-023-02090-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0854-083X</orcidid><orcidid>https://orcid.org/0000-0001-8066-2984</orcidid><orcidid>https://orcid.org/0000-0002-6466-7280</orcidid><orcidid>https://orcid.org/0000-0001-7538-2638</orcidid><orcidid>https://orcid.org/0000-0002-5900-5100</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2024, Vol.21 (1), p.72-82 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10776404 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/1647/2210/2211 631/61/212/177 Animals Antibodies Bar codes Bioinformatics Biological Microscopy Biological Techniques Biomarkers Biomedical and Life Sciences Biomedical Engineering/Biotechnology Bone marrow Chromatin Chromatin - genetics Chromatin Immunoprecipitation - methods Combinatorial analysis Epigenesis, Genetic Epigenetics Epitopes Gene expression Gene regulation Genomics Histone Code Histones Histones - metabolism Life Sciences Mice Mode of action Multiplexing Protein Processing, Post-Translational Proteomics Regulatory mechanisms (biology) |
title | Combinatorial single-cell profiling of major chromatin types with MAbID |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combinatorial%20single-cell%20profiling%20of%20major%20chromatin%20types%20with%20MAbID&rft.jtitle=Nature%20methods&rft.au=Lochs,%20Silke%20J.%20A.&rft.date=2024&rft.volume=21&rft.issue=1&rft.spage=72&rft.epage=82&rft.pages=72-82&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-023-02090-9&rft_dat=%3Cproquest_pubme%3E2912144159%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912144159&rft_id=info:pmid/38049699&rfr_iscdi=true |