Deep learning-assisted development and validation of an algorithm for predicting the growth of persistent pure ground-glass nodules

The prediction of the persistent pure ground-glass nodule (pGGN) growth is challenging and limited by subjective assessment and variation across radiologists. A chest computed tomography (CT) image-based deep learning classification model (DLCM) may provide a more accurate growth prediction. This re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational lung cancer research 2023-12, Vol.12 (12), p.2494-2504
Hauptverfasser: Tang, Yanhua, Li, Minzhen, Lin, Benke, Tao, Xuemin, Shi, Zhongyue, Jin, Xin, Bongiolatti, Stefano, Ricciardi, Sara, Divisi, Duilio, Durand, Marion, Youness, Houssein A, Shinohara, Shuichi, Zhu, Chuang, Liu, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!