The logic of recurrent circuits in the primary visual cortex

Recurrent cortical activity sculpts visual perception by refining, amplifying or suppressing visual input. However, the rules that govern the influence of recurrent activity remain enigmatic. We used ensemble-specific two-photon optogenetics in the mouse visual cortex to isolate the impact of recurr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2024, Vol.27 (1), p.137-147
Hauptverfasser: Oldenburg, Ian Antón, Hendricks, William D., Handy, Gregory, Shamardani, Kiarash, Bounds, Hayley A., Doiron, Brent, Adesnik, Hillel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 137
container_title Nature neuroscience
container_volume 27
creator Oldenburg, Ian Antón
Hendricks, William D.
Handy, Gregory
Shamardani, Kiarash
Bounds, Hayley A.
Doiron, Brent
Adesnik, Hillel
description Recurrent cortical activity sculpts visual perception by refining, amplifying or suppressing visual input. However, the rules that govern the influence of recurrent activity remain enigmatic. We used ensemble-specific two-photon optogenetics in the mouse visual cortex to isolate the impact of recurrent activity from external visual input. We found that the spatial arrangement and the visual feature preference of the stimulated ensemble and the neighboring neurons jointly determine the net effect of recurrent activity. Photoactivation of these ensembles drives suppression in all cells beyond 30 µm but uniformly drives activation in closer similarly tuned cells. In nonsimilarly tuned cells, compact, cotuned ensembles drive net suppression, while diffuse, cotuned ensembles drive activation. Computational modeling suggests that highly local recurrent excitatory connectivity and selective convergence onto inhibitory neurons explain these effects. Our findings reveal a straightforward logic in which space and feature preference of cortical ensembles determine their impact on local recurrent activity. Using two-photon (2P) optogenetics and computational modeling, the authors find that neither space-based nor feature-based rules are sufficient to describe cell–cell interactions within the primary visual cortex (V1). Instead, models must include interactions between these cardinal axes.
doi_str_mv 10.1038/s41593-023-01510-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10774145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910191518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ef8abc2ace8d22510a402adb46c9c3816532b9f9daf666ea1cc4ba47216f43da3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotlb_gAsJuHEzmmSSzAQEkeILCm7qOmQymTZlOqnJTNF_b-rU-li4CDdwv3tybg4ApxhdYpTmV4FiJtIEkXgwwyhhe2CIGeUJzgjfj3cksoQTxgfgKIQFQihjuTgEgzSPBE2zIbiezg2s3cxq6Croje68N00LtfW6s22AtoFtRFbeLpV_h2sbOlVD7Xxr3o7BQaXqYE62dQRe7u-m48dk8vzwNL6dJJpmrE1MlatCE6VNXhISjSqKiCoLyrXQ0QpnKSlEJUpVcc6NwlrTQtGMYF7RtFTpCNz0uquuWJpSR4Ne1XLrSTpl5e9OY-dy5tYSoyyjmLKocLFV8O61M6GVSxu0qWvVGNcFSQRGWMRPzCN6_gdduM43cb8NhTmniJNIkZ7S3oXgTbVzg5HcpCP7dGRMR36mIzcuzn7usRv5iiMCaQ-E2Gpmxn-__Y_sB4f7myE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911664062</pqid></control><display><type>article</type><title>The logic of recurrent circuits in the primary visual cortex</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Oldenburg, Ian Antón ; Hendricks, William D. ; Handy, Gregory ; Shamardani, Kiarash ; Bounds, Hayley A. ; Doiron, Brent ; Adesnik, Hillel</creator><creatorcontrib>Oldenburg, Ian Antón ; Hendricks, William D. ; Handy, Gregory ; Shamardani, Kiarash ; Bounds, Hayley A. ; Doiron, Brent ; Adesnik, Hillel</creatorcontrib><description>Recurrent cortical activity sculpts visual perception by refining, amplifying or suppressing visual input. However, the rules that govern the influence of recurrent activity remain enigmatic. We used ensemble-specific two-photon optogenetics in the mouse visual cortex to isolate the impact of recurrent activity from external visual input. We found that the spatial arrangement and the visual feature preference of the stimulated ensemble and the neighboring neurons jointly determine the net effect of recurrent activity. Photoactivation of these ensembles drives suppression in all cells beyond 30 µm but uniformly drives activation in closer similarly tuned cells. In nonsimilarly tuned cells, compact, cotuned ensembles drive net suppression, while diffuse, cotuned ensembles drive activation. Computational modeling suggests that highly local recurrent excitatory connectivity and selective convergence onto inhibitory neurons explain these effects. Our findings reveal a straightforward logic in which space and feature preference of cortical ensembles determine their impact on local recurrent activity. Using two-photon (2P) optogenetics and computational modeling, the authors find that neither space-based nor feature-based rules are sufficient to describe cell–cell interactions within the primary visual cortex (V1). Instead, models must include interactions between these cardinal axes.</description><identifier>ISSN: 1097-6256</identifier><identifier>ISSN: 1546-1726</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-023-01510-5</identifier><identifier>PMID: 38172437</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14/69 ; 631/378/116/1925 ; 631/378/116/2393 ; 631/378/2613/1875 ; 631/378/3920 ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biology ; Biomedical and Life Sciences ; Biomedicine ; Cell interactions ; Computational neuroscience ; Genetics ; Information processing ; Logic ; Mice ; Neural networks ; Neurobiology ; Neurons ; Neurons - physiology ; Neurosciences ; Optics ; Photic Stimulation ; Photoactivation ; Photons ; Preferences ; Primary Visual Cortex ; Synapses - physiology ; Visual cortex ; Visual pathways ; Visual perception ; Visual Perception - physiology</subject><ispartof>Nature neuroscience, 2024, Vol.27 (1), p.137-147</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-ef8abc2ace8d22510a402adb46c9c3816532b9f9daf666ea1cc4ba47216f43da3</citedby><cites>FETCH-LOGICAL-c475t-ef8abc2ace8d22510a402adb46c9c3816532b9f9daf666ea1cc4ba47216f43da3</cites><orcidid>0000-0003-4432-080X ; 0000-0002-3796-8643 ; 0000-0002-7356-104X ; 0000-0002-6916-5511 ; 0000-0003-2841-577X ; 0000-0002-2548-705X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-023-01510-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-023-01510-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38172437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oldenburg, Ian Antón</creatorcontrib><creatorcontrib>Hendricks, William D.</creatorcontrib><creatorcontrib>Handy, Gregory</creatorcontrib><creatorcontrib>Shamardani, Kiarash</creatorcontrib><creatorcontrib>Bounds, Hayley A.</creatorcontrib><creatorcontrib>Doiron, Brent</creatorcontrib><creatorcontrib>Adesnik, Hillel</creatorcontrib><title>The logic of recurrent circuits in the primary visual cortex</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Recurrent cortical activity sculpts visual perception by refining, amplifying or suppressing visual input. However, the rules that govern the influence of recurrent activity remain enigmatic. We used ensemble-specific two-photon optogenetics in the mouse visual cortex to isolate the impact of recurrent activity from external visual input. We found that the spatial arrangement and the visual feature preference of the stimulated ensemble and the neighboring neurons jointly determine the net effect of recurrent activity. Photoactivation of these ensembles drives suppression in all cells beyond 30 µm but uniformly drives activation in closer similarly tuned cells. In nonsimilarly tuned cells, compact, cotuned ensembles drive net suppression, while diffuse, cotuned ensembles drive activation. Computational modeling suggests that highly local recurrent excitatory connectivity and selective convergence onto inhibitory neurons explain these effects. Our findings reveal a straightforward logic in which space and feature preference of cortical ensembles determine their impact on local recurrent activity. Using two-photon (2P) optogenetics and computational modeling, the authors find that neither space-based nor feature-based rules are sufficient to describe cell–cell interactions within the primary visual cortex (V1). Instead, models must include interactions between these cardinal axes.</description><subject>14/69</subject><subject>631/378/116/1925</subject><subject>631/378/116/2393</subject><subject>631/378/2613/1875</subject><subject>631/378/3920</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell interactions</subject><subject>Computational neuroscience</subject><subject>Genetics</subject><subject>Information processing</subject><subject>Logic</subject><subject>Mice</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Optics</subject><subject>Photic Stimulation</subject><subject>Photoactivation</subject><subject>Photons</subject><subject>Preferences</subject><subject>Primary Visual Cortex</subject><subject>Synapses - physiology</subject><subject>Visual cortex</subject><subject>Visual pathways</subject><subject>Visual perception</subject><subject>Visual Perception - physiology</subject><issn>1097-6256</issn><issn>1546-1726</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtLAzEUhYMotlb_gAsJuHEzmmSSzAQEkeILCm7qOmQymTZlOqnJTNF_b-rU-li4CDdwv3tybg4ApxhdYpTmV4FiJtIEkXgwwyhhe2CIGeUJzgjfj3cksoQTxgfgKIQFQihjuTgEgzSPBE2zIbiezg2s3cxq6Croje68N00LtfW6s22AtoFtRFbeLpV_h2sbOlVD7Xxr3o7BQaXqYE62dQRe7u-m48dk8vzwNL6dJJpmrE1MlatCE6VNXhISjSqKiCoLyrXQ0QpnKSlEJUpVcc6NwlrTQtGMYF7RtFTpCNz0uquuWJpSR4Ne1XLrSTpl5e9OY-dy5tYSoyyjmLKocLFV8O61M6GVSxu0qWvVGNcFSQRGWMRPzCN6_gdduM43cb8NhTmniJNIkZ7S3oXgTbVzg5HcpCP7dGRMR36mIzcuzn7usRv5iiMCaQ-E2Gpmxn-__Y_sB4f7myE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Oldenburg, Ian Antón</creator><creator>Hendricks, William D.</creator><creator>Handy, Gregory</creator><creator>Shamardani, Kiarash</creator><creator>Bounds, Hayley A.</creator><creator>Doiron, Brent</creator><creator>Adesnik, Hillel</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4432-080X</orcidid><orcidid>https://orcid.org/0000-0002-3796-8643</orcidid><orcidid>https://orcid.org/0000-0002-7356-104X</orcidid><orcidid>https://orcid.org/0000-0002-6916-5511</orcidid><orcidid>https://orcid.org/0000-0003-2841-577X</orcidid><orcidid>https://orcid.org/0000-0002-2548-705X</orcidid></search><sort><creationdate>2024</creationdate><title>The logic of recurrent circuits in the primary visual cortex</title><author>Oldenburg, Ian Antón ; Hendricks, William D. ; Handy, Gregory ; Shamardani, Kiarash ; Bounds, Hayley A. ; Doiron, Brent ; Adesnik, Hillel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ef8abc2ace8d22510a402adb46c9c3816532b9f9daf666ea1cc4ba47216f43da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14/69</topic><topic>631/378/116/1925</topic><topic>631/378/116/2393</topic><topic>631/378/2613/1875</topic><topic>631/378/3920</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell interactions</topic><topic>Computational neuroscience</topic><topic>Genetics</topic><topic>Information processing</topic><topic>Logic</topic><topic>Mice</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Optics</topic><topic>Photic Stimulation</topic><topic>Photoactivation</topic><topic>Photons</topic><topic>Preferences</topic><topic>Primary Visual Cortex</topic><topic>Synapses - physiology</topic><topic>Visual cortex</topic><topic>Visual pathways</topic><topic>Visual perception</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oldenburg, Ian Antón</creatorcontrib><creatorcontrib>Hendricks, William D.</creatorcontrib><creatorcontrib>Handy, Gregory</creatorcontrib><creatorcontrib>Shamardani, Kiarash</creatorcontrib><creatorcontrib>Bounds, Hayley A.</creatorcontrib><creatorcontrib>Doiron, Brent</creatorcontrib><creatorcontrib>Adesnik, Hillel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oldenburg, Ian Antón</au><au>Hendricks, William D.</au><au>Handy, Gregory</au><au>Shamardani, Kiarash</au><au>Bounds, Hayley A.</au><au>Doiron, Brent</au><au>Adesnik, Hillel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The logic of recurrent circuits in the primary visual cortex</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2024</date><risdate>2024</risdate><volume>27</volume><issue>1</issue><spage>137</spage><epage>147</epage><pages>137-147</pages><issn>1097-6256</issn><issn>1546-1726</issn><eissn>1546-1726</eissn><abstract>Recurrent cortical activity sculpts visual perception by refining, amplifying or suppressing visual input. However, the rules that govern the influence of recurrent activity remain enigmatic. We used ensemble-specific two-photon optogenetics in the mouse visual cortex to isolate the impact of recurrent activity from external visual input. We found that the spatial arrangement and the visual feature preference of the stimulated ensemble and the neighboring neurons jointly determine the net effect of recurrent activity. Photoactivation of these ensembles drives suppression in all cells beyond 30 µm but uniformly drives activation in closer similarly tuned cells. In nonsimilarly tuned cells, compact, cotuned ensembles drive net suppression, while diffuse, cotuned ensembles drive activation. Computational modeling suggests that highly local recurrent excitatory connectivity and selective convergence onto inhibitory neurons explain these effects. Our findings reveal a straightforward logic in which space and feature preference of cortical ensembles determine their impact on local recurrent activity. Using two-photon (2P) optogenetics and computational modeling, the authors find that neither space-based nor feature-based rules are sufficient to describe cell–cell interactions within the primary visual cortex (V1). Instead, models must include interactions between these cardinal axes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>38172437</pmid><doi>10.1038/s41593-023-01510-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4432-080X</orcidid><orcidid>https://orcid.org/0000-0002-3796-8643</orcidid><orcidid>https://orcid.org/0000-0002-7356-104X</orcidid><orcidid>https://orcid.org/0000-0002-6916-5511</orcidid><orcidid>https://orcid.org/0000-0003-2841-577X</orcidid><orcidid>https://orcid.org/0000-0002-2548-705X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2024, Vol.27 (1), p.137-147
issn 1097-6256
1546-1726
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10774145
source MEDLINE; SpringerLink Journals; Nature
subjects 14/69
631/378/116/1925
631/378/116/2393
631/378/2613/1875
631/378/3920
Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biology
Biomedical and Life Sciences
Biomedicine
Cell interactions
Computational neuroscience
Genetics
Information processing
Logic
Mice
Neural networks
Neurobiology
Neurons
Neurons - physiology
Neurosciences
Optics
Photic Stimulation
Photoactivation
Photons
Preferences
Primary Visual Cortex
Synapses - physiology
Visual cortex
Visual pathways
Visual perception
Visual Perception - physiology
title The logic of recurrent circuits in the primary visual cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20logic%20of%20recurrent%20circuits%20in%20the%20primary%20visual%20cortex&rft.jtitle=Nature%20neuroscience&rft.au=Oldenburg,%20Ian%20Ant%C3%B3n&rft.date=2024&rft.volume=27&rft.issue=1&rft.spage=137&rft.epage=147&rft.pages=137-147&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-023-01510-5&rft_dat=%3Cproquest_pubme%3E2910191518%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911664062&rft_id=info:pmid/38172437&rfr_iscdi=true