A simulative deep learning model of SNP interactions on chromosome 19 for predicting Alzheimer's disease risk and rates of disease progression

BACKGROUND Identifying genetic patterns that contribute to Alzheimer's disease (AD) is important not only for pre‐symptomatic risk assessment but also for building personalized therapeutic strategies. METHODS We implemented a novel simulative deep learning model to chromosome 19 genetic data fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia 2023-12, Vol.19 (12), p.5690-5699
Hauptverfasser: Bae, Jinhyeong, Logan, Paige E., Acri, Dominic J., Bharthur, Apoorva, Nho, Kwangsik, Saykin, Andrew J., Risacher, Shannon L., Nudelman, Kelly, Polsinelli, Angelina J., Pentchev, Valentin, Kim, Jungsu, Hammers, Dustin B., Apostolova, Liana G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5699
container_issue 12
container_start_page 5690
container_title Alzheimer's & dementia
container_volume 19
creator Bae, Jinhyeong
Logan, Paige E.
Acri, Dominic J.
Bharthur, Apoorva
Nho, Kwangsik
Saykin, Andrew J.
Risacher, Shannon L.
Nudelman, Kelly
Polsinelli, Angelina J.
Pentchev, Valentin
Kim, Jungsu
Hammers, Dustin B.
Apostolova, Liana G.
description BACKGROUND Identifying genetic patterns that contribute to Alzheimer's disease (AD) is important not only for pre‐symptomatic risk assessment but also for building personalized therapeutic strategies. METHODS We implemented a novel simulative deep learning model to chromosome 19 genetic data from the Alzheimer's Disease Neuroimaging Initiative and the Imaging and Genetic Biomarkers of Alzheimer's Disease datasets. The model quantified the contribution of each single nucleotide polymorphism (SNP) and their epistatic impact on the likelihood of AD using the occlusion method. The top 35 AD‐risk SNPs in chromosome 19 were identified, and their ability to predict the rate of AD progression was analyzed. RESULTS Rs561311966 (APOC1) and rs2229918 (ERCC1/CD3EAP) were recognized as the most powerful factors influencing AD risk. The top 35 chromosome 19 AD‐risk SNPs were significant predictors of AD progression. DISCUSSION The model successfully estimated the contribution of AD‐risk SNPs that account for AD progression at the individual level. This can help in building preventive precision medicine.
doi_str_mv 10.1002/alz.13319
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10770299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834000422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3769-d79134fe7fc41f509372a38fd0601ff0bbb0c0a2a38a13d4966e5eff01c77a7e3</originalsourceid><addsrcrecordid>eNp1kcuOFCEUhonROBdd-AKGnc6iZw5FVdGsTGfiLemoibpxQ2g4dKMU1ED1mJmH8Jml7ZmOLlxB-D--Q_gJecbgnAE0FzrcnjPOmXxAjlnXNbOuEfLhYd_DETkp5TtAC3PWPSZHXLQg-zkck18LWvywDXry10gt4kgD6hx9XNMhWQw0Ofr5wyfq44RZm8mnWGiK1GxyGlJJA1ImqUuZjhmtr0C9uQi3G_QD5heFWl9QF6TZlx9UR0uznrDstPfJmNM6YylV_YQ8cjoUfHq3npKvb15_uXw3W358-_5ysZwZLno5s0Iy3joUzrTMdSC5aDSfOws9MOdgtVqBAb0704zbVvY9dlgDZoTQAvkpebX3jtvVgNZgnLIOasx-0PlGJe3Vv0n0G7VO14qBENBIWQ0v7ww5XW2xTGrwxWAIOmLaFtXMeQv1x5umomd71ORUSkZ3mMNA7QpUtUD1p8DKPv_7YQfyvrEKXOyBnz7gzf9NarH8tlf-BnybqG0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834000422</pqid></control><display><type>article</type><title>A simulative deep learning model of SNP interactions on chromosome 19 for predicting Alzheimer's disease risk and rates of disease progression</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bae, Jinhyeong ; Logan, Paige E. ; Acri, Dominic J. ; Bharthur, Apoorva ; Nho, Kwangsik ; Saykin, Andrew J. ; Risacher, Shannon L. ; Nudelman, Kelly ; Polsinelli, Angelina J. ; Pentchev, Valentin ; Kim, Jungsu ; Hammers, Dustin B. ; Apostolova, Liana G.</creator><creatorcontrib>Bae, Jinhyeong ; Logan, Paige E. ; Acri, Dominic J. ; Bharthur, Apoorva ; Nho, Kwangsik ; Saykin, Andrew J. ; Risacher, Shannon L. ; Nudelman, Kelly ; Polsinelli, Angelina J. ; Pentchev, Valentin ; Kim, Jungsu ; Hammers, Dustin B. ; Apostolova, Liana G. ; Alzheimer's Disease Neuroimaging Initiative ; for the Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><description>BACKGROUND Identifying genetic patterns that contribute to Alzheimer's disease (AD) is important not only for pre‐symptomatic risk assessment but also for building personalized therapeutic strategies. METHODS We implemented a novel simulative deep learning model to chromosome 19 genetic data from the Alzheimer's Disease Neuroimaging Initiative and the Imaging and Genetic Biomarkers of Alzheimer's Disease datasets. The model quantified the contribution of each single nucleotide polymorphism (SNP) and their epistatic impact on the likelihood of AD using the occlusion method. The top 35 AD‐risk SNPs in chromosome 19 were identified, and their ability to predict the rate of AD progression was analyzed. RESULTS Rs561311966 (APOC1) and rs2229918 (ERCC1/CD3EAP) were recognized as the most powerful factors influencing AD risk. The top 35 chromosome 19 AD‐risk SNPs were significant predictors of AD progression. DISCUSSION The model successfully estimated the contribution of AD‐risk SNPs that account for AD progression at the individual level. This can help in building preventive precision medicine.</description><identifier>ISSN: 1552-5260</identifier><identifier>ISSN: 1552-5279</identifier><identifier>EISSN: 1552-5279</identifier><identifier>DOI: 10.1002/alz.13319</identifier><identifier>PMID: 37409680</identifier><language>eng</language><publisher>United States</publisher><subject>Alzheimer Disease - genetics ; Alzheimer's disease ; Chromosomes, Human, Pair 19 ; Deep Learning ; Disease Progression ; genetics ; Humans ; Magnetic Resonance Imaging - methods ; Neuroimaging - methods ; Polymorphism, Single Nucleotide - genetics</subject><ispartof>Alzheimer's &amp; dementia, 2023-12, Vol.19 (12), p.5690-5699</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of Alzheimer's Association.</rights><rights>2023 The Authors. Alzheimer's &amp; Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3769-d79134fe7fc41f509372a38fd0601ff0bbb0c0a2a38a13d4966e5eff01c77a7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Falz.13319$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Falz.13319$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37409680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bae, Jinhyeong</creatorcontrib><creatorcontrib>Logan, Paige E.</creatorcontrib><creatorcontrib>Acri, Dominic J.</creatorcontrib><creatorcontrib>Bharthur, Apoorva</creatorcontrib><creatorcontrib>Nho, Kwangsik</creatorcontrib><creatorcontrib>Saykin, Andrew J.</creatorcontrib><creatorcontrib>Risacher, Shannon L.</creatorcontrib><creatorcontrib>Nudelman, Kelly</creatorcontrib><creatorcontrib>Polsinelli, Angelina J.</creatorcontrib><creatorcontrib>Pentchev, Valentin</creatorcontrib><creatorcontrib>Kim, Jungsu</creatorcontrib><creatorcontrib>Hammers, Dustin B.</creatorcontrib><creatorcontrib>Apostolova, Liana G.</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>for the Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><title>A simulative deep learning model of SNP interactions on chromosome 19 for predicting Alzheimer's disease risk and rates of disease progression</title><title>Alzheimer's &amp; dementia</title><addtitle>Alzheimers Dement</addtitle><description>BACKGROUND Identifying genetic patterns that contribute to Alzheimer's disease (AD) is important not only for pre‐symptomatic risk assessment but also for building personalized therapeutic strategies. METHODS We implemented a novel simulative deep learning model to chromosome 19 genetic data from the Alzheimer's Disease Neuroimaging Initiative and the Imaging and Genetic Biomarkers of Alzheimer's Disease datasets. The model quantified the contribution of each single nucleotide polymorphism (SNP) and their epistatic impact on the likelihood of AD using the occlusion method. The top 35 AD‐risk SNPs in chromosome 19 were identified, and their ability to predict the rate of AD progression was analyzed. RESULTS Rs561311966 (APOC1) and rs2229918 (ERCC1/CD3EAP) were recognized as the most powerful factors influencing AD risk. The top 35 chromosome 19 AD‐risk SNPs were significant predictors of AD progression. DISCUSSION The model successfully estimated the contribution of AD‐risk SNPs that account for AD progression at the individual level. This can help in building preventive precision medicine.</description><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer's disease</subject><subject>Chromosomes, Human, Pair 19</subject><subject>Deep Learning</subject><subject>Disease Progression</subject><subject>genetics</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Neuroimaging - methods</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><issn>1552-5260</issn><issn>1552-5279</issn><issn>1552-5279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcuOFCEUhonROBdd-AKGnc6iZw5FVdGsTGfiLemoibpxQ2g4dKMU1ED1mJmH8Jml7ZmOLlxB-D--Q_gJecbgnAE0FzrcnjPOmXxAjlnXNbOuEfLhYd_DETkp5TtAC3PWPSZHXLQg-zkck18LWvywDXry10gt4kgD6hx9XNMhWQw0Ofr5wyfq44RZm8mnWGiK1GxyGlJJA1ImqUuZjhmtr0C9uQi3G_QD5heFWl9QF6TZlx9UR0uznrDstPfJmNM6YylV_YQ8cjoUfHq3npKvb15_uXw3W358-_5ysZwZLno5s0Iy3joUzrTMdSC5aDSfOws9MOdgtVqBAb0704zbVvY9dlgDZoTQAvkpebX3jtvVgNZgnLIOasx-0PlGJe3Vv0n0G7VO14qBENBIWQ0v7ww5XW2xTGrwxWAIOmLaFtXMeQv1x5umomd71ORUSkZ3mMNA7QpUtUD1p8DKPv_7YQfyvrEKXOyBnz7gzf9NarH8tlf-BnybqG0</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Bae, Jinhyeong</creator><creator>Logan, Paige E.</creator><creator>Acri, Dominic J.</creator><creator>Bharthur, Apoorva</creator><creator>Nho, Kwangsik</creator><creator>Saykin, Andrew J.</creator><creator>Risacher, Shannon L.</creator><creator>Nudelman, Kelly</creator><creator>Polsinelli, Angelina J.</creator><creator>Pentchev, Valentin</creator><creator>Kim, Jungsu</creator><creator>Hammers, Dustin B.</creator><creator>Apostolova, Liana G.</creator><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202312</creationdate><title>A simulative deep learning model of SNP interactions on chromosome 19 for predicting Alzheimer's disease risk and rates of disease progression</title><author>Bae, Jinhyeong ; Logan, Paige E. ; Acri, Dominic J. ; Bharthur, Apoorva ; Nho, Kwangsik ; Saykin, Andrew J. ; Risacher, Shannon L. ; Nudelman, Kelly ; Polsinelli, Angelina J. ; Pentchev, Valentin ; Kim, Jungsu ; Hammers, Dustin B. ; Apostolova, Liana G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3769-d79134fe7fc41f509372a38fd0601ff0bbb0c0a2a38a13d4966e5eff01c77a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer's disease</topic><topic>Chromosomes, Human, Pair 19</topic><topic>Deep Learning</topic><topic>Disease Progression</topic><topic>genetics</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Neuroimaging - methods</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Jinhyeong</creatorcontrib><creatorcontrib>Logan, Paige E.</creatorcontrib><creatorcontrib>Acri, Dominic J.</creatorcontrib><creatorcontrib>Bharthur, Apoorva</creatorcontrib><creatorcontrib>Nho, Kwangsik</creatorcontrib><creatorcontrib>Saykin, Andrew J.</creatorcontrib><creatorcontrib>Risacher, Shannon L.</creatorcontrib><creatorcontrib>Nudelman, Kelly</creatorcontrib><creatorcontrib>Polsinelli, Angelina J.</creatorcontrib><creatorcontrib>Pentchev, Valentin</creatorcontrib><creatorcontrib>Kim, Jungsu</creatorcontrib><creatorcontrib>Hammers, Dustin B.</creatorcontrib><creatorcontrib>Apostolova, Liana G.</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>for the Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Alzheimer's &amp; dementia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Jinhyeong</au><au>Logan, Paige E.</au><au>Acri, Dominic J.</au><au>Bharthur, Apoorva</au><au>Nho, Kwangsik</au><au>Saykin, Andrew J.</au><au>Risacher, Shannon L.</au><au>Nudelman, Kelly</au><au>Polsinelli, Angelina J.</au><au>Pentchev, Valentin</au><au>Kim, Jungsu</au><au>Hammers, Dustin B.</au><au>Apostolova, Liana G.</au><aucorp>Alzheimer's Disease Neuroimaging Initiative</aucorp><aucorp>for the Alzheimer's Disease Neuroimaging Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simulative deep learning model of SNP interactions on chromosome 19 for predicting Alzheimer's disease risk and rates of disease progression</atitle><jtitle>Alzheimer's &amp; dementia</jtitle><addtitle>Alzheimers Dement</addtitle><date>2023-12</date><risdate>2023</risdate><volume>19</volume><issue>12</issue><spage>5690</spage><epage>5699</epage><pages>5690-5699</pages><issn>1552-5260</issn><issn>1552-5279</issn><eissn>1552-5279</eissn><abstract>BACKGROUND Identifying genetic patterns that contribute to Alzheimer's disease (AD) is important not only for pre‐symptomatic risk assessment but also for building personalized therapeutic strategies. METHODS We implemented a novel simulative deep learning model to chromosome 19 genetic data from the Alzheimer's Disease Neuroimaging Initiative and the Imaging and Genetic Biomarkers of Alzheimer's Disease datasets. The model quantified the contribution of each single nucleotide polymorphism (SNP) and their epistatic impact on the likelihood of AD using the occlusion method. The top 35 AD‐risk SNPs in chromosome 19 were identified, and their ability to predict the rate of AD progression was analyzed. RESULTS Rs561311966 (APOC1) and rs2229918 (ERCC1/CD3EAP) were recognized as the most powerful factors influencing AD risk. The top 35 chromosome 19 AD‐risk SNPs were significant predictors of AD progression. DISCUSSION The model successfully estimated the contribution of AD‐risk SNPs that account for AD progression at the individual level. This can help in building preventive precision medicine.</abstract><cop>United States</cop><pmid>37409680</pmid><doi>10.1002/alz.13319</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-5260
ispartof Alzheimer's & dementia, 2023-12, Vol.19 (12), p.5690-5699
issn 1552-5260
1552-5279
1552-5279
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10770299
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alzheimer Disease - genetics
Alzheimer's disease
Chromosomes, Human, Pair 19
Deep Learning
Disease Progression
genetics
Humans
Magnetic Resonance Imaging - methods
Neuroimaging - methods
Polymorphism, Single Nucleotide - genetics
title A simulative deep learning model of SNP interactions on chromosome 19 for predicting Alzheimer's disease risk and rates of disease progression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simulative%20deep%20learning%20model%20of%20SNP%20interactions%20on%20chromosome%2019%20for%20predicting%20Alzheimer's%20disease%20risk%20and%20rates%20of%20disease%20progression&rft.jtitle=Alzheimer's%20&%20dementia&rft.au=Bae,%20Jinhyeong&rft.aucorp=Alzheimer's%20Disease%20Neuroimaging%20Initiative&rft.date=2023-12&rft.volume=19&rft.issue=12&rft.spage=5690&rft.epage=5699&rft.pages=5690-5699&rft.issn=1552-5260&rft.eissn=1552-5279&rft_id=info:doi/10.1002/alz.13319&rft_dat=%3Cproquest_pubme%3E2834000422%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834000422&rft_id=info:pmid/37409680&rfr_iscdi=true