Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells
Here, we present a gene regulation strategy enabling programmable control over eukaryotic translational initiation. By excising the natural poly-adenylation (poly-A) signal of target genes and replacing it with a synthetic control region harboring RNA-binding protein (RBP)-specific aptamers, cap-dep...
Gespeichert in:
Veröffentlicht in: | Cell research 2024-01, Vol.34 (1), p.31-46 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Cell research |
container_volume | 34 |
creator | Shao, Jiawei Li, Shichao Qiu, Xinyuan Jiang, Jian Zhang, Lihang Wang, Pengli Si, Yaqing Wu, Yuhang He, Minghui Xiong, Qiqi Zhao, Liuqi Li, Yilin Fan, Yuxuan Viviani, Mirta Fu, Yu Wu, Chaohua Gao, Ting Zhu, Lingyun Fussenegger, Martin Wang, Hui Xie, Mingqi |
description | Here, we present a gene regulation strategy enabling programmable control over eukaryotic translational initiation. By excising the natural poly-adenylation (poly-A) signal of target genes and replacing it with a synthetic control region harboring RNA-binding protein (RBP)-specific aptamers, cap-dependent translation is rendered exclusively dependent on synthetic translation initiation factors (STIFs) containing different RBPs engineered to conditionally associate with different eIF4F-binding proteins (eIFBPs). This modular design framework facilitates the engineering of various gene switches and intracellular sensors responding to many user-defined trigger signals of interest, demonstrating tightly controlled, rapid and reversible regulation of transgene expression in mammalian cells as well as compatibility with various clinically applicable delivery routes of in vivo gene therapy. Therapeutic efficacy was demonstrated in two animal models. To exemplify disease treatments that require on-demand drug secretion, we show that a custom-designed gene switch triggered by the FDA-approved drug grazoprevir can effectively control insulin expression and restore glucose homeostasis in diabetic mice. For diseases that require instantaneous sense-and-response treatment programs, we create highly specific sensors for various subcellularly (mis)localized protein markers (such as cancer-related fusion proteins) and show that translation-based protein sensors can be used either alone or in combination with other cell-state classification strategies to create therapeutic biocomputers driving self-sufficient elimination of tumor cells in mice. This design strategy demonstrates unprecedented flexibility for translational regulation and could form the basis for a novel class of programmable gene therapies in vivo. |
doi_str_mv | 10.1038/s41422-023-00896-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10770082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910191957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-4c1061c60bfc7a369b648295dd4b1204d48aa449f9d31224fbe1776aa91268e3</originalsourceid><addsrcrecordid>eNp9kctO3jAQha2qqFDgBbqovKSLFN8S26sKIXqRkLphb00cJxg5dmonlf63xzQU0U1XtnXOnPHMh9AHSj5TwtVlEVQw1hDGG0KU7prDG3RCpVCNVFy9fXU_Ru9LeSCEtaKl79AxV1SylvMTFG7i5KNz2Q14SeFwcfWpKVvOaYLVFTymjNcMsQRYfYoQcHbTtj8wxAGv9y7D4rbVW9z7ZNO8bOsu-4hnmGcIHiK2LoRyho5GCMWdP5-n6O7rzd319-b257cf11e3jRVCro2wlHTUdqQfrQTe6b4Tiul2GERPGRGDUABC6FEPnDImxt5RKTsATVmnHD9FX_bYZetnN1gX6wjBLNnPkA8mgTf_KtHfmyn9NpRIWTfJasLFc0JOvzZXVjP78jQCRJe2YpimhGqqW1mtbLfanErJbnzpQ4l5wmR2TKZiMn8wmUMt-vj6hy8lf7lUA98NpUpxctk8pC3X_Zf_xT4Cfguhmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910191957</pqid></control><display><type>article</type><title>Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Shao, Jiawei ; Li, Shichao ; Qiu, Xinyuan ; Jiang, Jian ; Zhang, Lihang ; Wang, Pengli ; Si, Yaqing ; Wu, Yuhang ; He, Minghui ; Xiong, Qiqi ; Zhao, Liuqi ; Li, Yilin ; Fan, Yuxuan ; Viviani, Mirta ; Fu, Yu ; Wu, Chaohua ; Gao, Ting ; Zhu, Lingyun ; Fussenegger, Martin ; Wang, Hui ; Xie, Mingqi</creator><creatorcontrib>Shao, Jiawei ; Li, Shichao ; Qiu, Xinyuan ; Jiang, Jian ; Zhang, Lihang ; Wang, Pengli ; Si, Yaqing ; Wu, Yuhang ; He, Minghui ; Xiong, Qiqi ; Zhao, Liuqi ; Li, Yilin ; Fan, Yuxuan ; Viviani, Mirta ; Fu, Yu ; Wu, Chaohua ; Gao, Ting ; Zhu, Lingyun ; Fussenegger, Martin ; Wang, Hui ; Xie, Mingqi</creatorcontrib><description>Here, we present a gene regulation strategy enabling programmable control over eukaryotic translational initiation. By excising the natural poly-adenylation (poly-A) signal of target genes and replacing it with a synthetic control region harboring RNA-binding protein (RBP)-specific aptamers, cap-dependent translation is rendered exclusively dependent on synthetic translation initiation factors (STIFs) containing different RBPs engineered to conditionally associate with different eIF4F-binding proteins (eIFBPs). This modular design framework facilitates the engineering of various gene switches and intracellular sensors responding to many user-defined trigger signals of interest, demonstrating tightly controlled, rapid and reversible regulation of transgene expression in mammalian cells as well as compatibility with various clinically applicable delivery routes of in vivo gene therapy. Therapeutic efficacy was demonstrated in two animal models. To exemplify disease treatments that require on-demand drug secretion, we show that a custom-designed gene switch triggered by the FDA-approved drug grazoprevir can effectively control insulin expression and restore glucose homeostasis in diabetic mice. For diseases that require instantaneous sense-and-response treatment programs, we create highly specific sensors for various subcellularly (mis)localized protein markers (such as cancer-related fusion proteins) and show that translation-based protein sensors can be used either alone or in combination with other cell-state classification strategies to create therapeutic biocomputers driving self-sufficient elimination of tumor cells in mice. This design strategy demonstrates unprecedented flexibility for translational regulation and could form the basis for a novel class of programmable gene therapies in vivo.</description><identifier>ISSN: 1748-7838</identifier><identifier>ISSN: 1001-0602</identifier><identifier>EISSN: 1748-7838</identifier><identifier>DOI: 10.1038/s41422-023-00896-y</identifier><identifier>PMID: 38172533</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>14/10 ; 38/47 ; 631/337/2179 ; 631/67/1059/602 ; Animals ; Biomedical and Life Sciences ; Carrier Proteins - metabolism ; Cell Biology ; Diabetes Mellitus, Experimental ; Eukaryotic Initiation Factor-4F - metabolism ; Gene Expression Regulation ; Life Sciences ; Mammals ; Mice ; Protein Processing, Post-Translational</subject><ispartof>Cell research, 2024-01, Vol.34 (1), p.31-46</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-4c1061c60bfc7a369b648295dd4b1204d48aa449f9d31224fbe1776aa91268e3</citedby><cites>FETCH-LOGICAL-c447t-4c1061c60bfc7a369b648295dd4b1204d48aa449f9d31224fbe1776aa91268e3</cites><orcidid>0000-0001-5657-532X ; 0000-0002-6368-0627 ; 0000-0002-1273-1973 ; 0000-0002-9662-8075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38172533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Jiawei</creatorcontrib><creatorcontrib>Li, Shichao</creatorcontrib><creatorcontrib>Qiu, Xinyuan</creatorcontrib><creatorcontrib>Jiang, Jian</creatorcontrib><creatorcontrib>Zhang, Lihang</creatorcontrib><creatorcontrib>Wang, Pengli</creatorcontrib><creatorcontrib>Si, Yaqing</creatorcontrib><creatorcontrib>Wu, Yuhang</creatorcontrib><creatorcontrib>He, Minghui</creatorcontrib><creatorcontrib>Xiong, Qiqi</creatorcontrib><creatorcontrib>Zhao, Liuqi</creatorcontrib><creatorcontrib>Li, Yilin</creatorcontrib><creatorcontrib>Fan, Yuxuan</creatorcontrib><creatorcontrib>Viviani, Mirta</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Wu, Chaohua</creatorcontrib><creatorcontrib>Gao, Ting</creatorcontrib><creatorcontrib>Zhu, Lingyun</creatorcontrib><creatorcontrib>Fussenegger, Martin</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Xie, Mingqi</creatorcontrib><title>Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells</title><title>Cell research</title><addtitle>Cell Res</addtitle><addtitle>Cell Res</addtitle><description>Here, we present a gene regulation strategy enabling programmable control over eukaryotic translational initiation. By excising the natural poly-adenylation (poly-A) signal of target genes and replacing it with a synthetic control region harboring RNA-binding protein (RBP)-specific aptamers, cap-dependent translation is rendered exclusively dependent on synthetic translation initiation factors (STIFs) containing different RBPs engineered to conditionally associate with different eIF4F-binding proteins (eIFBPs). This modular design framework facilitates the engineering of various gene switches and intracellular sensors responding to many user-defined trigger signals of interest, demonstrating tightly controlled, rapid and reversible regulation of transgene expression in mammalian cells as well as compatibility with various clinically applicable delivery routes of in vivo gene therapy. Therapeutic efficacy was demonstrated in two animal models. To exemplify disease treatments that require on-demand drug secretion, we show that a custom-designed gene switch triggered by the FDA-approved drug grazoprevir can effectively control insulin expression and restore glucose homeostasis in diabetic mice. For diseases that require instantaneous sense-and-response treatment programs, we create highly specific sensors for various subcellularly (mis)localized protein markers (such as cancer-related fusion proteins) and show that translation-based protein sensors can be used either alone or in combination with other cell-state classification strategies to create therapeutic biocomputers driving self-sufficient elimination of tumor cells in mice. This design strategy demonstrates unprecedented flexibility for translational regulation and could form the basis for a novel class of programmable gene therapies in vivo.</description><subject>14/10</subject><subject>38/47</subject><subject>631/337/2179</subject><subject>631/67/1059/602</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Diabetes Mellitus, Experimental</subject><subject>Eukaryotic Initiation Factor-4F - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Mice</subject><subject>Protein Processing, Post-Translational</subject><issn>1748-7838</issn><issn>1001-0602</issn><issn>1748-7838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kctO3jAQha2qqFDgBbqovKSLFN8S26sKIXqRkLphb00cJxg5dmonlf63xzQU0U1XtnXOnPHMh9AHSj5TwtVlEVQw1hDGG0KU7prDG3RCpVCNVFy9fXU_Ru9LeSCEtaKl79AxV1SylvMTFG7i5KNz2Q14SeFwcfWpKVvOaYLVFTymjNcMsQRYfYoQcHbTtj8wxAGv9y7D4rbVW9z7ZNO8bOsu-4hnmGcIHiK2LoRyho5GCMWdP5-n6O7rzd319-b257cf11e3jRVCro2wlHTUdqQfrQTe6b4Tiul2GERPGRGDUABC6FEPnDImxt5RKTsATVmnHD9FX_bYZetnN1gX6wjBLNnPkA8mgTf_KtHfmyn9NpRIWTfJasLFc0JOvzZXVjP78jQCRJe2YpimhGqqW1mtbLfanErJbnzpQ4l5wmR2TKZiMn8wmUMt-vj6hy8lf7lUA98NpUpxctk8pC3X_Zf_xT4Cfguhmw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Shao, Jiawei</creator><creator>Li, Shichao</creator><creator>Qiu, Xinyuan</creator><creator>Jiang, Jian</creator><creator>Zhang, Lihang</creator><creator>Wang, Pengli</creator><creator>Si, Yaqing</creator><creator>Wu, Yuhang</creator><creator>He, Minghui</creator><creator>Xiong, Qiqi</creator><creator>Zhao, Liuqi</creator><creator>Li, Yilin</creator><creator>Fan, Yuxuan</creator><creator>Viviani, Mirta</creator><creator>Fu, Yu</creator><creator>Wu, Chaohua</creator><creator>Gao, Ting</creator><creator>Zhu, Lingyun</creator><creator>Fussenegger, Martin</creator><creator>Wang, Hui</creator><creator>Xie, Mingqi</creator><general>Springer Nature Singapore</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5657-532X</orcidid><orcidid>https://orcid.org/0000-0002-6368-0627</orcidid><orcidid>https://orcid.org/0000-0002-1273-1973</orcidid><orcidid>https://orcid.org/0000-0002-9662-8075</orcidid></search><sort><creationdate>20240101</creationdate><title>Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells</title><author>Shao, Jiawei ; Li, Shichao ; Qiu, Xinyuan ; Jiang, Jian ; Zhang, Lihang ; Wang, Pengli ; Si, Yaqing ; Wu, Yuhang ; He, Minghui ; Xiong, Qiqi ; Zhao, Liuqi ; Li, Yilin ; Fan, Yuxuan ; Viviani, Mirta ; Fu, Yu ; Wu, Chaohua ; Gao, Ting ; Zhu, Lingyun ; Fussenegger, Martin ; Wang, Hui ; Xie, Mingqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-4c1061c60bfc7a369b648295dd4b1204d48aa449f9d31224fbe1776aa91268e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14/10</topic><topic>38/47</topic><topic>631/337/2179</topic><topic>631/67/1059/602</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Diabetes Mellitus, Experimental</topic><topic>Eukaryotic Initiation Factor-4F - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Mice</topic><topic>Protein Processing, Post-Translational</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Jiawei</creatorcontrib><creatorcontrib>Li, Shichao</creatorcontrib><creatorcontrib>Qiu, Xinyuan</creatorcontrib><creatorcontrib>Jiang, Jian</creatorcontrib><creatorcontrib>Zhang, Lihang</creatorcontrib><creatorcontrib>Wang, Pengli</creatorcontrib><creatorcontrib>Si, Yaqing</creatorcontrib><creatorcontrib>Wu, Yuhang</creatorcontrib><creatorcontrib>He, Minghui</creatorcontrib><creatorcontrib>Xiong, Qiqi</creatorcontrib><creatorcontrib>Zhao, Liuqi</creatorcontrib><creatorcontrib>Li, Yilin</creatorcontrib><creatorcontrib>Fan, Yuxuan</creatorcontrib><creatorcontrib>Viviani, Mirta</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Wu, Chaohua</creatorcontrib><creatorcontrib>Gao, Ting</creatorcontrib><creatorcontrib>Zhu, Lingyun</creatorcontrib><creatorcontrib>Fussenegger, Martin</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Xie, Mingqi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Jiawei</au><au>Li, Shichao</au><au>Qiu, Xinyuan</au><au>Jiang, Jian</au><au>Zhang, Lihang</au><au>Wang, Pengli</au><au>Si, Yaqing</au><au>Wu, Yuhang</au><au>He, Minghui</au><au>Xiong, Qiqi</au><au>Zhao, Liuqi</au><au>Li, Yilin</au><au>Fan, Yuxuan</au><au>Viviani, Mirta</au><au>Fu, Yu</au><au>Wu, Chaohua</au><au>Gao, Ting</au><au>Zhu, Lingyun</au><au>Fussenegger, Martin</au><au>Wang, Hui</au><au>Xie, Mingqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells</atitle><jtitle>Cell research</jtitle><stitle>Cell Res</stitle><addtitle>Cell Res</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>34</volume><issue>1</issue><spage>31</spage><epage>46</epage><pages>31-46</pages><issn>1748-7838</issn><issn>1001-0602</issn><eissn>1748-7838</eissn><abstract>Here, we present a gene regulation strategy enabling programmable control over eukaryotic translational initiation. By excising the natural poly-adenylation (poly-A) signal of target genes and replacing it with a synthetic control region harboring RNA-binding protein (RBP)-specific aptamers, cap-dependent translation is rendered exclusively dependent on synthetic translation initiation factors (STIFs) containing different RBPs engineered to conditionally associate with different eIF4F-binding proteins (eIFBPs). This modular design framework facilitates the engineering of various gene switches and intracellular sensors responding to many user-defined trigger signals of interest, demonstrating tightly controlled, rapid and reversible regulation of transgene expression in mammalian cells as well as compatibility with various clinically applicable delivery routes of in vivo gene therapy. Therapeutic efficacy was demonstrated in two animal models. To exemplify disease treatments that require on-demand drug secretion, we show that a custom-designed gene switch triggered by the FDA-approved drug grazoprevir can effectively control insulin expression and restore glucose homeostasis in diabetic mice. For diseases that require instantaneous sense-and-response treatment programs, we create highly specific sensors for various subcellularly (mis)localized protein markers (such as cancer-related fusion proteins) and show that translation-based protein sensors can be used either alone or in combination with other cell-state classification strategies to create therapeutic biocomputers driving self-sufficient elimination of tumor cells in mice. This design strategy demonstrates unprecedented flexibility for translational regulation and could form the basis for a novel class of programmable gene therapies in vivo.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>38172533</pmid><doi>10.1038/s41422-023-00896-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5657-532X</orcidid><orcidid>https://orcid.org/0000-0002-6368-0627</orcidid><orcidid>https://orcid.org/0000-0002-1273-1973</orcidid><orcidid>https://orcid.org/0000-0002-9662-8075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-7838 |
ispartof | Cell research, 2024-01, Vol.34 (1), p.31-46 |
issn | 1748-7838 1001-0602 1748-7838 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10770082 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | 14/10 38/47 631/337/2179 631/67/1059/602 Animals Biomedical and Life Sciences Carrier Proteins - metabolism Cell Biology Diabetes Mellitus, Experimental Eukaryotic Initiation Factor-4F - metabolism Gene Expression Regulation Life Sciences Mammals Mice Protein Processing, Post-Translational |
title | Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20poly(A)-surrogates%20for%20translational%20regulation%20and%20therapeutic%20biocomputation%20in%20mammalian%20cells&rft.jtitle=Cell%20research&rft.au=Shao,%20Jiawei&rft.date=2024-01-01&rft.volume=34&rft.issue=1&rft.spage=31&rft.epage=46&rft.pages=31-46&rft.issn=1748-7838&rft.eissn=1748-7838&rft_id=info:doi/10.1038/s41422-023-00896-y&rft_dat=%3Cproquest_pubme%3E2910191957%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910191957&rft_id=info:pmid/38172533&rfr_iscdi=true |