Multimodal assessment of mitochondrial function in Parkinson's disease

The heterogenous aetiology of Parkinson's disease is increasingly recognized; both mitochondrial and lysosomal dysfunction have been implicated. Powerful, clinically applicable tools are required to enable mechanistic stratification for future precision medicine approaches. The aim of this stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain (London, England : 1878) England : 1878), 2024-01, Vol.147 (1), p.267-280
Hauptverfasser: Payne, Thomas, Burgess, Toby, Bradley, Stephen, Roscoe, Sarah, Sassani, Matilde, Dunning, Mark J, Hernandez, Dena, Scholz, Sonja, McNeill, Alisdair, Taylor, Rosie, Su, Li, Wilkinson, Iain, Jenkins, Thomas, Mortiboys, Heather, Bandmann, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 1
container_start_page 267
container_title Brain (London, England : 1878)
container_volume 147
creator Payne, Thomas
Burgess, Toby
Bradley, Stephen
Roscoe, Sarah
Sassani, Matilde
Dunning, Mark J
Hernandez, Dena
Scholz, Sonja
McNeill, Alisdair
Taylor, Rosie
Su, Li
Wilkinson, Iain
Jenkins, Thomas
Mortiboys, Heather
Bandmann, Oliver
description The heterogenous aetiology of Parkinson's disease is increasingly recognized; both mitochondrial and lysosomal dysfunction have been implicated. Powerful, clinically applicable tools are required to enable mechanistic stratification for future precision medicine approaches. The aim of this study was to characterize bioenergetic dysfunction in Parkinson's disease by applying a multimodal approach, combining standardized clinical assessment with midbrain and putaminal 31-phosphorus magnetic resonance spectroscopy (31P-MRS) and deep phenotyping of mitochondrial and lysosomal function in peripheral tissue in patients with recent-onset Parkinson's disease and control subjects. Sixty participants (35 patients with Parkinson's disease and 25 healthy controls) underwent 31P-MRS for quantification of energy-rich metabolites [ATP, inorganic phosphate (Pi) and phosphocreatine] in putamen and midbrain. In parallel, skin biopsies were obtained from all research participants to establish fibroblast cell lines for subsequent quantification of total intracellular ATP and mitochondrial membrane potential (MMP) as well as mitochondrial and lysosomal morphology, using high content live cell imaging. Lower MMP correlated with higher intracellular ATP (r = -0.55, P = 0.0016), higher mitochondrial counts (r = -0.72, P < 0.0001) and higher lysosomal counts (r = -0.62, P = 0.0002) in Parkinson's disease patient-derived fibroblasts only, consistent with impaired mitophagy and mitochondrial uncoupling. 31P-MRS-derived posterior putaminal Pi/ATP ratio variance was considerably greater in Parkinson's disease than in healthy controls (F-tests, P = 0.0036). Furthermore, elevated 31P-MRS-derived putaminal, but not midbrain Pi/ATP ratios (indicative of impaired oxidative phosphorylation) correlated with both greater mitochondrial (r = 0.37, P = 0.0319) and lysosomal counts (r = 0.48, P = 0.0044) as well as lower MMP in both short (r = -0.52, P = 0.0016) and long (r = -0.47, P = 0.0052) mitochondria in Parkinson's disease. Higher 31P-MRS midbrain phosphocreatine correlated with greater risk of rapid disease progression (r = 0.47, P = 0.0384). Our data suggest that impaired oxidative phosphorylation in the striatal dopaminergic nerve terminals exceeds mitochondrial dysfunction in the midbrain of patients with early Parkinson's disease. Our data further support the hypothesis of a prominent link between impaired mitophagy and impaired striatal energy homeostasis as a key event in early Park
doi_str_mv 10.1093/brain/awad364
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10766247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899371822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-6a4cfae2c29cddf1882557230c97757ea33c75de183ffbbe208348bafadbae443</originalsourceid><addsrcrecordid>eNpVkDtPwzAUhS0EoqUwsqJssIT6kYczIVRRQCqCAWbrxg9qSOxiJyD-PYGWCqY7nE_nHn0IHRN8TnDFpnUA66bwAYoV2Q4ak6zAKSV5sYvGGOMi5VWOR-ggxheMScZosY9GjOO84piM0fyubzrbegVNAjHqGFvtusSbpLWdl0vvVLBDZnonO-tdYl3yAOHVuujdaUyUjRqiPkR7BpqojzZ3gp7mV4-zm3Rxf307u1ykknHepQVk0oCmklZSKUM4p3leUoZlVZZ5qYExWeZKE86MqWtNMWcZr8GAqkFnGZugi3Xvqq9breSwNUAjVsG2ED6FByv-J84uxbN_FwSXRUGzcmg42zQE_9br2InWRqmbBpz2fRSUVxUrCad0QNM1KoOPMWiz_UOw-JYvfuSLjfyBP_k7bkv_2mZfsmGE6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899371822</pqid></control><display><type>article</type><title>Multimodal assessment of mitochondrial function in Parkinson's disease</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Payne, Thomas ; Burgess, Toby ; Bradley, Stephen ; Roscoe, Sarah ; Sassani, Matilde ; Dunning, Mark J ; Hernandez, Dena ; Scholz, Sonja ; McNeill, Alisdair ; Taylor, Rosie ; Su, Li ; Wilkinson, Iain ; Jenkins, Thomas ; Mortiboys, Heather ; Bandmann, Oliver</creator><creatorcontrib>Payne, Thomas ; Burgess, Toby ; Bradley, Stephen ; Roscoe, Sarah ; Sassani, Matilde ; Dunning, Mark J ; Hernandez, Dena ; Scholz, Sonja ; McNeill, Alisdair ; Taylor, Rosie ; Su, Li ; Wilkinson, Iain ; Jenkins, Thomas ; Mortiboys, Heather ; Bandmann, Oliver</creatorcontrib><description>The heterogenous aetiology of Parkinson's disease is increasingly recognized; both mitochondrial and lysosomal dysfunction have been implicated. Powerful, clinically applicable tools are required to enable mechanistic stratification for future precision medicine approaches. The aim of this study was to characterize bioenergetic dysfunction in Parkinson's disease by applying a multimodal approach, combining standardized clinical assessment with midbrain and putaminal 31-phosphorus magnetic resonance spectroscopy (31P-MRS) and deep phenotyping of mitochondrial and lysosomal function in peripheral tissue in patients with recent-onset Parkinson's disease and control subjects. Sixty participants (35 patients with Parkinson's disease and 25 healthy controls) underwent 31P-MRS for quantification of energy-rich metabolites [ATP, inorganic phosphate (Pi) and phosphocreatine] in putamen and midbrain. In parallel, skin biopsies were obtained from all research participants to establish fibroblast cell lines for subsequent quantification of total intracellular ATP and mitochondrial membrane potential (MMP) as well as mitochondrial and lysosomal morphology, using high content live cell imaging. Lower MMP correlated with higher intracellular ATP (r = -0.55, P = 0.0016), higher mitochondrial counts (r = -0.72, P &lt; 0.0001) and higher lysosomal counts (r = -0.62, P = 0.0002) in Parkinson's disease patient-derived fibroblasts only, consistent with impaired mitophagy and mitochondrial uncoupling. 31P-MRS-derived posterior putaminal Pi/ATP ratio variance was considerably greater in Parkinson's disease than in healthy controls (F-tests, P = 0.0036). Furthermore, elevated 31P-MRS-derived putaminal, but not midbrain Pi/ATP ratios (indicative of impaired oxidative phosphorylation) correlated with both greater mitochondrial (r = 0.37, P = 0.0319) and lysosomal counts (r = 0.48, P = 0.0044) as well as lower MMP in both short (r = -0.52, P = 0.0016) and long (r = -0.47, P = 0.0052) mitochondria in Parkinson's disease. Higher 31P-MRS midbrain phosphocreatine correlated with greater risk of rapid disease progression (r = 0.47, P = 0.0384). Our data suggest that impaired oxidative phosphorylation in the striatal dopaminergic nerve terminals exceeds mitochondrial dysfunction in the midbrain of patients with early Parkinson's disease. Our data further support the hypothesis of a prominent link between impaired mitophagy and impaired striatal energy homeostasis as a key event in early Parkinson's disease.</description><identifier>ISSN: 0006-8950</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awad364</identifier><identifier>PMID: 38059801</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine Triphosphate - metabolism ; Corpus Striatum - metabolism ; Humans ; Mitochondria - metabolism ; Original ; Parkinson Disease ; Phosphocreatine - metabolism</subject><ispartof>Brain (London, England : 1878), 2024-01, Vol.147 (1), p.267-280</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-6a4cfae2c29cddf1882557230c97757ea33c75de183ffbbe208348bafadbae443</citedby><cites>FETCH-LOGICAL-c388t-6a4cfae2c29cddf1882557230c97757ea33c75de183ffbbe208348bafadbae443</cites><orcidid>0000-0002-6623-0429 ; 0000-0003-3149-0252 ; 0000-0001-6753-7847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38059801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Payne, Thomas</creatorcontrib><creatorcontrib>Burgess, Toby</creatorcontrib><creatorcontrib>Bradley, Stephen</creatorcontrib><creatorcontrib>Roscoe, Sarah</creatorcontrib><creatorcontrib>Sassani, Matilde</creatorcontrib><creatorcontrib>Dunning, Mark J</creatorcontrib><creatorcontrib>Hernandez, Dena</creatorcontrib><creatorcontrib>Scholz, Sonja</creatorcontrib><creatorcontrib>McNeill, Alisdair</creatorcontrib><creatorcontrib>Taylor, Rosie</creatorcontrib><creatorcontrib>Su, Li</creatorcontrib><creatorcontrib>Wilkinson, Iain</creatorcontrib><creatorcontrib>Jenkins, Thomas</creatorcontrib><creatorcontrib>Mortiboys, Heather</creatorcontrib><creatorcontrib>Bandmann, Oliver</creatorcontrib><title>Multimodal assessment of mitochondrial function in Parkinson's disease</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>The heterogenous aetiology of Parkinson's disease is increasingly recognized; both mitochondrial and lysosomal dysfunction have been implicated. Powerful, clinically applicable tools are required to enable mechanistic stratification for future precision medicine approaches. The aim of this study was to characterize bioenergetic dysfunction in Parkinson's disease by applying a multimodal approach, combining standardized clinical assessment with midbrain and putaminal 31-phosphorus magnetic resonance spectroscopy (31P-MRS) and deep phenotyping of mitochondrial and lysosomal function in peripheral tissue in patients with recent-onset Parkinson's disease and control subjects. Sixty participants (35 patients with Parkinson's disease and 25 healthy controls) underwent 31P-MRS for quantification of energy-rich metabolites [ATP, inorganic phosphate (Pi) and phosphocreatine] in putamen and midbrain. In parallel, skin biopsies were obtained from all research participants to establish fibroblast cell lines for subsequent quantification of total intracellular ATP and mitochondrial membrane potential (MMP) as well as mitochondrial and lysosomal morphology, using high content live cell imaging. Lower MMP correlated with higher intracellular ATP (r = -0.55, P = 0.0016), higher mitochondrial counts (r = -0.72, P &lt; 0.0001) and higher lysosomal counts (r = -0.62, P = 0.0002) in Parkinson's disease patient-derived fibroblasts only, consistent with impaired mitophagy and mitochondrial uncoupling. 31P-MRS-derived posterior putaminal Pi/ATP ratio variance was considerably greater in Parkinson's disease than in healthy controls (F-tests, P = 0.0036). Furthermore, elevated 31P-MRS-derived putaminal, but not midbrain Pi/ATP ratios (indicative of impaired oxidative phosphorylation) correlated with both greater mitochondrial (r = 0.37, P = 0.0319) and lysosomal counts (r = 0.48, P = 0.0044) as well as lower MMP in both short (r = -0.52, P = 0.0016) and long (r = -0.47, P = 0.0052) mitochondria in Parkinson's disease. Higher 31P-MRS midbrain phosphocreatine correlated with greater risk of rapid disease progression (r = 0.47, P = 0.0384). Our data suggest that impaired oxidative phosphorylation in the striatal dopaminergic nerve terminals exceeds mitochondrial dysfunction in the midbrain of patients with early Parkinson's disease. Our data further support the hypothesis of a prominent link between impaired mitophagy and impaired striatal energy homeostasis as a key event in early Parkinson's disease.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Corpus Striatum - metabolism</subject><subject>Humans</subject><subject>Mitochondria - metabolism</subject><subject>Original</subject><subject>Parkinson Disease</subject><subject>Phosphocreatine - metabolism</subject><issn>0006-8950</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkDtPwzAUhS0EoqUwsqJssIT6kYczIVRRQCqCAWbrxg9qSOxiJyD-PYGWCqY7nE_nHn0IHRN8TnDFpnUA66bwAYoV2Q4ak6zAKSV5sYvGGOMi5VWOR-ggxheMScZosY9GjOO84piM0fyubzrbegVNAjHqGFvtusSbpLWdl0vvVLBDZnonO-tdYl3yAOHVuujdaUyUjRqiPkR7BpqojzZ3gp7mV4-zm3Rxf307u1ykknHepQVk0oCmklZSKUM4p3leUoZlVZZ5qYExWeZKE86MqWtNMWcZr8GAqkFnGZugi3Xvqq9breSwNUAjVsG2ED6FByv-J84uxbN_FwSXRUGzcmg42zQE_9br2InWRqmbBpz2fRSUVxUrCad0QNM1KoOPMWiz_UOw-JYvfuSLjfyBP_k7bkv_2mZfsmGE6Q</recordid><startdate>20240104</startdate><enddate>20240104</enddate><creator>Payne, Thomas</creator><creator>Burgess, Toby</creator><creator>Bradley, Stephen</creator><creator>Roscoe, Sarah</creator><creator>Sassani, Matilde</creator><creator>Dunning, Mark J</creator><creator>Hernandez, Dena</creator><creator>Scholz, Sonja</creator><creator>McNeill, Alisdair</creator><creator>Taylor, Rosie</creator><creator>Su, Li</creator><creator>Wilkinson, Iain</creator><creator>Jenkins, Thomas</creator><creator>Mortiboys, Heather</creator><creator>Bandmann, Oliver</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6623-0429</orcidid><orcidid>https://orcid.org/0000-0003-3149-0252</orcidid><orcidid>https://orcid.org/0000-0001-6753-7847</orcidid></search><sort><creationdate>20240104</creationdate><title>Multimodal assessment of mitochondrial function in Parkinson's disease</title><author>Payne, Thomas ; Burgess, Toby ; Bradley, Stephen ; Roscoe, Sarah ; Sassani, Matilde ; Dunning, Mark J ; Hernandez, Dena ; Scholz, Sonja ; McNeill, Alisdair ; Taylor, Rosie ; Su, Li ; Wilkinson, Iain ; Jenkins, Thomas ; Mortiboys, Heather ; Bandmann, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-6a4cfae2c29cddf1882557230c97757ea33c75de183ffbbe208348bafadbae443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Corpus Striatum - metabolism</topic><topic>Humans</topic><topic>Mitochondria - metabolism</topic><topic>Original</topic><topic>Parkinson Disease</topic><topic>Phosphocreatine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Payne, Thomas</creatorcontrib><creatorcontrib>Burgess, Toby</creatorcontrib><creatorcontrib>Bradley, Stephen</creatorcontrib><creatorcontrib>Roscoe, Sarah</creatorcontrib><creatorcontrib>Sassani, Matilde</creatorcontrib><creatorcontrib>Dunning, Mark J</creatorcontrib><creatorcontrib>Hernandez, Dena</creatorcontrib><creatorcontrib>Scholz, Sonja</creatorcontrib><creatorcontrib>McNeill, Alisdair</creatorcontrib><creatorcontrib>Taylor, Rosie</creatorcontrib><creatorcontrib>Su, Li</creatorcontrib><creatorcontrib>Wilkinson, Iain</creatorcontrib><creatorcontrib>Jenkins, Thomas</creatorcontrib><creatorcontrib>Mortiboys, Heather</creatorcontrib><creatorcontrib>Bandmann, Oliver</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Payne, Thomas</au><au>Burgess, Toby</au><au>Bradley, Stephen</au><au>Roscoe, Sarah</au><au>Sassani, Matilde</au><au>Dunning, Mark J</au><au>Hernandez, Dena</au><au>Scholz, Sonja</au><au>McNeill, Alisdair</au><au>Taylor, Rosie</au><au>Su, Li</au><au>Wilkinson, Iain</au><au>Jenkins, Thomas</au><au>Mortiboys, Heather</au><au>Bandmann, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal assessment of mitochondrial function in Parkinson's disease</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2024-01-04</date><risdate>2024</risdate><volume>147</volume><issue>1</issue><spage>267</spage><epage>280</epage><pages>267-280</pages><issn>0006-8950</issn><eissn>1460-2156</eissn><abstract>The heterogenous aetiology of Parkinson's disease is increasingly recognized; both mitochondrial and lysosomal dysfunction have been implicated. Powerful, clinically applicable tools are required to enable mechanistic stratification for future precision medicine approaches. The aim of this study was to characterize bioenergetic dysfunction in Parkinson's disease by applying a multimodal approach, combining standardized clinical assessment with midbrain and putaminal 31-phosphorus magnetic resonance spectroscopy (31P-MRS) and deep phenotyping of mitochondrial and lysosomal function in peripheral tissue in patients with recent-onset Parkinson's disease and control subjects. Sixty participants (35 patients with Parkinson's disease and 25 healthy controls) underwent 31P-MRS for quantification of energy-rich metabolites [ATP, inorganic phosphate (Pi) and phosphocreatine] in putamen and midbrain. In parallel, skin biopsies were obtained from all research participants to establish fibroblast cell lines for subsequent quantification of total intracellular ATP and mitochondrial membrane potential (MMP) as well as mitochondrial and lysosomal morphology, using high content live cell imaging. Lower MMP correlated with higher intracellular ATP (r = -0.55, P = 0.0016), higher mitochondrial counts (r = -0.72, P &lt; 0.0001) and higher lysosomal counts (r = -0.62, P = 0.0002) in Parkinson's disease patient-derived fibroblasts only, consistent with impaired mitophagy and mitochondrial uncoupling. 31P-MRS-derived posterior putaminal Pi/ATP ratio variance was considerably greater in Parkinson's disease than in healthy controls (F-tests, P = 0.0036). Furthermore, elevated 31P-MRS-derived putaminal, but not midbrain Pi/ATP ratios (indicative of impaired oxidative phosphorylation) correlated with both greater mitochondrial (r = 0.37, P = 0.0319) and lysosomal counts (r = 0.48, P = 0.0044) as well as lower MMP in both short (r = -0.52, P = 0.0016) and long (r = -0.47, P = 0.0052) mitochondria in Parkinson's disease. Higher 31P-MRS midbrain phosphocreatine correlated with greater risk of rapid disease progression (r = 0.47, P = 0.0384). Our data suggest that impaired oxidative phosphorylation in the striatal dopaminergic nerve terminals exceeds mitochondrial dysfunction in the midbrain of patients with early Parkinson's disease. Our data further support the hypothesis of a prominent link between impaired mitophagy and impaired striatal energy homeostasis as a key event in early Parkinson's disease.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38059801</pmid><doi>10.1093/brain/awad364</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6623-0429</orcidid><orcidid>https://orcid.org/0000-0003-3149-0252</orcidid><orcidid>https://orcid.org/0000-0001-6753-7847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8950
ispartof Brain (London, England : 1878), 2024-01, Vol.147 (1), p.267-280
issn 0006-8950
1460-2156
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10766247
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Adenosine Triphosphate - metabolism
Corpus Striatum - metabolism
Humans
Mitochondria - metabolism
Original
Parkinson Disease
Phosphocreatine - metabolism
title Multimodal assessment of mitochondrial function in Parkinson's disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20assessment%20of%20mitochondrial%20function%20in%20Parkinson's%20disease&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Payne,%20Thomas&rft.date=2024-01-04&rft.volume=147&rft.issue=1&rft.spage=267&rft.epage=280&rft.pages=267-280&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awad364&rft_dat=%3Cproquest_pubme%3E2899371822%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899371822&rft_id=info:pmid/38059801&rfr_iscdi=true